
D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 1 of 59

www.decide-h2020.eu

Deliverable D3.2

Intermediate architectural patterns for implementation,
deployment and optimization

Editor(s): Kyriakos Stefanidis

Responsible Partner: Fraunhofer

Status-Version: Final – v1.0

Date: 30/11/2018

Distribution level (CO, PU): Public

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 2 of 59

www.decide-h2020.eu

Project Number: GA 731533

Project Title: DECIDE

Title of Deliverable:
Intermediate architectural patterns for
implementation, deployment and optimization

Due Date of Delivery to the EC: 30/11/2018

Work Package responsible for the
Deliverable:

WP3 - Continuous Architecting

Editor(s): Kyriakos Stefanidis (Fraunhofer)

Contributor(s):
Simon Dutkowski (Fraunhofer)

Anne Barsuhn (Fraunhofer)

Kyriakos Stefanidis (Fraunhofer)

Reviewer(s): Javier Gavilanes (EXPERIS)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP4, and WP5

Abstract: This report details the architectural patterns that
comprise DECIDE ARCHITECT. It defines the description
format and usage for those patterns together with an
extended pattern set. It also describes the functional
and architectural design of the ARCHITECT module.

Keyword List: Multi-cloud application, Multi-cloud patterns, multi-
cloud architecture, microservices, distributed
applications, DevOps

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and the
Commission is not responsible for any use that may be
made of the information contained therein

http://www.decide-h2020.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 3 of 59

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 28/09/2018 First draft version FhG

v0.2 25/10/2018 Added/Updated sections on pattern
models, new patterns, nfr structure,
pattern language

FhG

v0.3 19/11/2018 Added section for pattern inferring.
Updated rest of the document for
intermediate deliverable

FhG

v0.4 21/11/2018 Updated abstract and executive
summary

FhG

v0.5 26/11/2018 Updated based on internal review
comments

FhG

V1.0 27/11/2018 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 4 of 59

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 5

List of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 8

 Introduction ... 9

1.1 About this deliverable ... 9

1.2 Document structure .. 9

 State of the Art of Multi-Cloud Patterns ... 11

2.1 Vendor Agnostic Patterns .. 11

2.2 Vendor Specific Patterns ... 13

 Multi-Cloud Native Application Architectures .. 15

 Cloud Computing Architectural Patterns for Multi-Cloud Apps .. 18

4.1 Definition of Multi-Cloud Architectural Patterns .. 18

4.2 DECIDE Patterns .. 19

4.2.1 DECIDE Fundamental Patterns .. 19

4.2.2 DECIDE Optimization Patterns... 23

4.2.3 DECIDE Development Patterns .. 24

4.2.4 DECIDE Deployment Patterns .. 27

4.3 Inferring DECIDE patterns from NFRs .. 29

4.3.1 Goals .. 29

4.3.2 Process ... 30

4.3.3 NFR properties ... 31

4.3.4 Pattern properties ... 31

4.3.5 Inferring algorithm .. 32

4.3.6 Presentation of results .. 32

 ARCHITECT Tool ... 33

5.1 DECIDE Context ... 34

5.2 Technical Description .. 35

5.3 Functionality and Requirements Coverage ... 36

 Conclusions .. 38

6.1 Future Work .. 38

 References ... 39

Appendix A. NFR Properties and Pattern Language .. 41

Appendix B. ARCHITECT Software Documentation ... 44

Appendix B.1 Delivery and Usage: The Eclipse Plugin ... 44

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 5 of 59

www.decide-h2020.eu

Appendix B.1.1 Building from Source ... 44

Appendix B.1.2 Installing the Plugin ... 45

Appendix B.1.3 User Manual .. 45

Appendix B.2 Delivery and Usage: The Cloud Patterns ... 51

Appendix B.2.1 Building from Source ... 53

Appendix B.2.2 Installation and Usage ... 53

Appendix B.3 Delivery and Usage: The Cloud Patterns Microservice ... 54

Appendix B.3.1 Building from Source ... 54

Appendix B.3.2 Building and Using a Docker Image ... 54

Appendix B.3.3 Usage ... 54

Appendix B.4 Delivery and Usage: The AppManager .. 55

Appendix B.4.1 Building from Source ... 55

Appendix B.4.2 Installation and Usage ... 55

Appendix C. Sock Shop example app ... 56

Appendix C.1 Architecture ... 56

Appendix C.2 Non-functional Requirements ... 57

Appendix C.3 Candidate DECIDE Patterns ... 57

Appendix C.3.1 DECIDE Fundamental Patterns .. 57

Appendix C.3.2 DECIDE Optimization Patterns ... 58

Appendix C.3.3 DECIDE Development Patterns .. 58

Appendix C.3.4 DECIDE Deployment Patterns .. 58

Appendix C.4 Resulting Architecture ... 58

List of Figures

FIGURE 1. EVOLUTION OF SOFTWARE DEVELOPMENT AND DEPLOYMENT .. 16
FIGURE 2. ARCHITECT TOOL USE CASES .. 33
FIGURE 3. USE CASE CREATE DECIDE PROJECT .. 34
FIGURE 4. ARCHITECT TOOL ARCHITECTURE .. 35
FIGURE 5. CREATE PROJECT WIZARD .. 46
FIGURE 6. WIZARD ADD MICROSERVICES .. 47
FIGURE 7. WIZARD DEFINE MICROSERVICES ... 48
FIGURE 8. APPLICATION DESCRIPTION EDITOR .. 49
FIGURE 9. NFR EDITOR .. 50
FIGURE 10. INFERRED PATTERNS ... 50
FIGURE 11. ARCHITECTURE OF SOCKSHOP APP [17] ... 56
FIGURE 12. SOCKSHOP APP UPDATED ARCHITECTURE ... 59

List of Tables

TABLE 1. VENDOR AGNOSTIC PATTERNS - CLOUD COMPUTING PATTERNS ... 11

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 6 of 59

www.decide-h2020.eu

TABLE 2. VENDOR AGNOSTIC PATTERNS - ARTIST PROJECT .. 11
TABLE 3. VENDOR AGNOSTIC PATTERNS - TOREADOR PROJECT .. 12
TABLE 4. VENDOR SPECIFIC PATTERNS - AWS CLOUD DESIGN PATTERNS .. 13
TABLE 5. VENDOR SPECIFIC PATTERNS - MICROSOFT AZURE CLOUD DESIGN PATTERNS ... 14
TABLE 6. DECIDE FUNDAMENTAL PATTERNS FOR SEPARATION OF CONCERN AND DISTRIBUTION 19
TABLE 7. DECIDE FUNDAMENTAL PATTERN FOR CONTAINERIZED SERVICES .. 20
TABLE 8. DECIDE FUNDAMENTAL PATTERNS FOR EXTERNAL CONFIGURATION STORAGE 22
TABLE 9. DECIDE FUNDAMENTAL PATTERN FOR SERVICE REGISTRY AND DISCOVERY ... 22
TABLE 10. DECIDE OPTIMISATION PATTERNS .. 23
TABLE 11. DECIDE DEVELOPMENT PATTERNS ... 24
TABLE 12. DECIDE DEPLOYMENT PATTERNS ... 27
TABLE 13. RELATIONSHIP BETWEEN FUNCTIONALITIES AND REQUIREMENTS FOR THE ARCHITECT TOOL 37
TABLE 14. NFR LANGUAGE ... 41
TABLE 15. PATTERN LANGUAGE ... 42

Terms and abbreviations

AGS Authentication Gateway Service

API Application Programming Interface

AWS Amazon Web Services

CDP Cloud Design Patterns

CI Continuous Integration

CPIP Cloud Provider Independent Pattern

CPSP Cloud Provider Specific Pattern

CSP Cloud Service Provider

DNS Domain Name System

DoS Denial of Service

EC European Commission

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IP Internet Protocol

JSON Java Script Object Notation

KR Key Result

LUN Logical Unit Number

MTTR Mean Time To Recovery

NFR Non-functional Requirement

NIST National Institute of Standards and Technology

PSP Platform Specific Patterns

QoS Quality of Service

REST Representational state transfer

RPC Request Procedure Call

SaaS Software-as-a-Service

SKOS Simple Knowledge Organization System

SOA Service Oriented Architecture

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 7 of 59

www.decide-h2020.eu

SotA State of the Art

SSO Single Sign On

TPM Trusted Platform Module

UI User Interface

URI Universal Resource Identifier

VM Virtual Machine

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 8 of 59

www.decide-h2020.eu

Executive Summary

The deliverable at hand presents the intermediate architectural multi-cloud patterns for
implementation, deployment and optimisation of multi-cloud native applications and is the output of
T3.1 – “Multi-cloud native applications architectural patterns for implementation, deployment and
optimization” of WP3 – “Continuous Architecting”. The architectural patterns form the first building
block for the DECIDE project and will be fed into the ARCHITECT tool (KR2) in order to aid developers
in developing apps that are multi-cloud aware. It also presents the design of the ARCHITECT tool itself.
There will be one more deliverable that presents the final results.

This deliverable is an update of the D3.1 – “Initial architectural patterns for implementation,
deployment and optimization” and therefore reuses and updates the previous results and content.
This is done so, for readability purposes.

The deliverable starts off by presenting the multi-cloud concepts and the benefits of adopting a multi-
cloud strategy. This is strengthened by analysing at the state of the art (SotA) in which patterns have
been developed for the implementation of multi-cloud apps.

Based on the results of the SotA, a categorisation of multi-cloud fundamental, optimisation,
development and deployment patterns have been selected. The fundamental patterns are related to
concepts that allow for an application to be multi-cloud aware and dynamically re-deployed and re-
adapted to fulfil its non-functional requirements with no or minimal downtime. Furthermore, these
patterns are in line with the approach considered by the DECIDE DevOps Framework. With this set of
patterns as listed in this document, developers can ensure to address relevant NFRs at the design time
of the application in question, this is exemplified using a microservices based application by applying
the relevant multi-cloud patterns.

Following the patterns presentation, the description of the pattern inferring process that decides
which patterns should be followed by the developer based on her chosen non-functional requirements
is presented. This forms the core of the ARCHITECT tool. The output of this process is a set of pattern
recommendations that, if adopted by the developer, can fulfil the developer’s non-functional
requirements.

Moreover the ARCHITECT tool and its design and implementation details are presented in the last
chapters. The technical details of the tool, such as installation, configuration and usage, are presented
in the appendices along with the first demonstration of the results.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 9 of 59

www.decide-h2020.eu

 Introduction

1.1 About this deliverable

This deliverable “Intermediate architectural patterns for implementation, deployment and
optimization” is the second of the three deliverables that will be produced under task 3.1 in the context
of WP3. This deliverable is an update of the D3.1 – “Initial architectural patterns for implementation,
deployment and optimization” and therefore reuses and updates the previous results and content.

Nowadays, organisations and companies are changing the way they develop and deploy software.
Agility is a major new paradigm adopted and correspondingly the use of Cloud technologies. In turn,
the latter evolved and now these companies and organisations are working on getting the most out of
the available Cloud landscape and leveraging resources based on their non-functional requirements
(NFRs), such as scalability, availability, location, but also costs. A multi-cloud strategy is a product of
this evolution and provides many benefits, but when developing apps for it there are certain aspects
that need to be considered at the design time of an application.

This deliverable focuses on these aspects and discusses concepts and their related architectural
patterns with regards to multi-cloud native applications. Architectural patterns provide a general and
reusable solution to commonly occurring problems in the development and deployment of software
artefacts. Why should one re-invent the wheel while others have already found solution to the
problem and have documented it?

The intermediate set of patterns introduced in this deliverable are meant to aid developers to design
their applications in a way that it is multi-cloud aware and that a set of non-functional requirements
are always fulfilled when the app is running. Furthermore, by applying these architectural patterns the
application will be able to be deployed, run and be monitored by the DECIDE DevOps Framework.

In the context of DECIDE, these patterns are fed into the ARCHITECT tool [KR2]. ARCHITECT then uses
the information on the NFRs as input to recommend multi-cloud architectural patterns for the
developer.

Lastly, it is important to note that this document does not describe each pattern fully, but gives
directions on the need for applying specific patterns and refers to sources with their description.

1.2 Document structure

The deliverable at hand starts with a state of the art analysis in section 2. The analysis looks at different
projects that have worked on cloud architectural patterns as well as multi-cloud architectural patterns.
The type of patterns established in the projects have different natures, some of which are vendor
specific and some vendor agnostic, some address cloud applications and their deployments some
address the multi-cloud paradigm. These projects present initial ideas and work regarding these topics
and bring about a number of architectural patterns that will be reused in the DECIDE project.

Section 3 “Multi-Cloud Native Application Architectures” discusses the benefits and aims of adopting
a multi-cloud strategy and explains the differences between architectures and deployments in order
to conclude on the type of applications we are targeting in the DECIDE project. The type of application
is a multi-cloud application and in the context of DECIDE implies that the application is distributed over
different CSPs and can be seamlessly re-deployed, i.e. ported across multiple heterogeneous CSPs.

Furthermore, Section 3 discusses considerations with regards to properties a DevOps team has to fulfil
in order for apps to be able to run in a multi-cloud environment.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 10 of 59

www.decide-h2020.eu

Section 4 is intentionally named “Cloud Computing Architectural Patterns for Multi-Cloud Apps” as it
introduces and discusses architectural patterns from the Cloud Computing realm, as presented in
Section 2, which when collectively applied, address the Multi-Cloud context.

The considerations made in Section 3 are translated into concepts and architectural patterns
associated with them are listed. The concepts are regarded as fundamental ones that fulfil the
requirements of a multi-cloud native application. In addition to this, these fundamental concepts and
patterns allow for the correct functioning of the DECIDE DevOps Framework, in the sense that the
application can be (re)-deployed, monitored and re-adapted. In the same section, further multi-cloud
native application patterns are introduced, which when applied result in optimising the application to
be multi-cloud aware as well as more patterns for deployment and development of multi-cloud native
apps.

Lastly, the detailed description of the process that the ARCHITECT module follows in order to suggest
patterns to the developer based on the given NFRs can be found in the last sub section.

Section 5 describes the design of the ARCHITECT tool [KR2] and details its functionality as well as its
architecture.

Finally, in section 6, the conclusion is presented along with future work.

Appendix A contains the detailed property descriptions of the NFRs and the Pattern vocabulary

Appendix B contains the software documentation of the ARCHITECT tool

Appendix C describes the SockShop App, which is an exemplary application to showcase a
microservices based application development. DECIDE Multi-cloud patterns are applied to the
SockShop in order to render it multi-cloud aware based on hypothetical non-functional requirements.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 11 of 59

www.decide-h2020.eu

 State of the Art of Multi-Cloud Patterns

This section presents the state of the art analysis for multi-cloud patterns. In the context of the DECIDE
project, multi-cloud patterns are those that enable the design, modelling and development of
distributed applications over heterogeneous cloud resources in a faster and systematic way.

The existence of this notion of multi-cloud is relatively new and thus the work and research conducted
regarding this matter is to date relatively immature.

We therefore included in our analysis research projects that handle patterns for cloud native apps and
Cloud Computing but not just multi-cloud, with the goal to understand what we can learn and reuse
from them. In general, it is important to note that by re-using well-known and established patterns we
envision easing the development process for the developers by not adding an additional overhead for
understanding and learning new patterns. Furthermore, we hope to borrow from the established
pattern language as well as the content of each selected pattern. The research projects have been split
into the two categories agnostic patterns and vendor specific patterns. The description and usefulness
for the DECIDE project are briefly discussed below.

2.1 Vendor Agnostic Patterns

The following are research projects that have defined cloud patterns from an agnostic perspective. The
content of this section has not been updated with respect to D3.1 [1] but it is kept in this document
for readability purposes.

Table 1. Vendor agnostic patterns - Cloud Computing Patterns

Name Cloud Computing Patterns [2]

Description This book uses patterns to describe cloud service models and cloud deployment types
in an abstract and provider agnostic form to categorize the offerings of cloud
providers. Furthermore, it shows reoccurring cloud application architectural patterns
on how to design, build, and manage applications that use these cloud offerings. The
abstraction of these patterns makes them applicable to challenges faced by
developers regardless of the actual technologies and cloud services that they are
using. The authors of the book also created an icon language to describe and
communicate these patterns efficiently.

Usefulness
for DECIDE

The authors created a large library of different Cloud Computing patterns covering a
number of use cases, which can be used by ARCHITECT; some of these patterns
already incorporate the idea of a multi-cloud distributed application. Furthermore,
the vendor agnostic description language provided can be used or adapted by DECIDE
to effectively convey the function and idea of the patterns we are using to the user.

Table 2. Vendor agnostic patterns - ARTIST project

Name ARTIST – Advanced software-based service provisioning and migration of legacy
Software [3]

Description The ARTIST project provides a method to move a non-cloud software application to
the cloud. To help with this a catalogue of over thirty cloudification and optimization
patterns has been developed and released. However, these patterns focus mostly on

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 12 of 59

www.decide-h2020.eu

the cloud offerings from Microsoft, Azure and AWS and furthermore just on single
cloud deployment instead of a multi-cloud deployment that DECIDE focuses on.

Usefulness
for DECIDE

This means that these patterns most likely cannot directly be used but have to be
adapted to a multi-cloud approach if possible. Nevertheless, such a collection of
patterns for a multi cloud deployment can be very valuable, not just for DECIDE alone,
but for the whole multi-cloud ecosystem, whose growth then in turn can be helpful
for the success of DECIDE. Furthermore, the structured approach used to arrive at
these patterns and to describe them can also be adapted to design the patterns
needed for DECIDE.

Table 3. Vendor agnostic patterns - Toreador project

Name TOREADOR Project [4]

Description The TOREADOR project envisioned to develop a Big Data Analytics-as-a-Service
approach to support Big Data adoption in European companies and organizations. To
accomplish this, research was conducted for new solutions for the problem of
composing Cloud services to satisfy requirements. One of the outcomes was a paper
presenting a semantic-based representation of Application Patterns and Cloud
Services [4], with an example of its use in a typical distributed application, which
shows how the proposed approach can be successfully employed for the discovery
and composition of Cloud Services.

Usefulness
for DECIDE

This Paper describes a method to construct vendor specific patterns from agnostic
ones, which can be useful for the developer of an application to help them implement
the patterns proposed by ARCHITECT.

Table 4. Vendor agnostic patterns - MODAClouds Project

Name MODAClouds Project [5]

Description The MODAClouds project provides methods, a decision support system, an open
source IDE and run-time environment for the high-level design, early prototyping,
semi-automatic code generation, and automatic deployment of applications on multi-
Clouds with guaranteed QoS. Model-driven development combined with novel
model-driven risk analysis and quality prediction will enable developers to specify
Cloud-provider independent models enriched with quality parameters, implement
these, perform quality prediction, monitor applications at run-time and optimize
them based on the feedback, thus filling the gap between design and run-time.
Additionally, MODAClouds provides techniques for data mapping and synchronization
among multiple Clouds.

Usefulness
for DECIDE

This project approached the cloud provider agnostic vs. non-agnostic issue by
developing a model language, which consists of Cloud provider-independent models
and Cloud provider-specific models and can seamlessly translate between both. They
also have created a number of multi-cloud patterns that are mostly relying on some
heuristics like decomposing and encapsulating the features of an application into
modular and reusable blocks. The approach taken in MODAClouds is reusable in this
project, however, it needs to be investigated if simply designing an application as a

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 13 of 59

www.decide-h2020.eu

whole using the MODAClouds patterns suffices a multi-cloud strategy or whether
looking at the components (i.e. microservices) of the application individually needs to
be taken into account.

Table 5. Vendor agnostic patterns – Cloud Migration Patterns

Name Cloud Migration Patterns – Multi-Cloud Architectural Description [6]

Description The research of Jamshidi et al presents a catalogue of cloud architecture migration
patterns that target multi-cloud strategies. The contribution aids application
developers and architects in planning the migration and easily communicating the
plan with non-technical stakeholders.

Usefulness
for DECIDE

Although the title of the thesis addresses the multi-cloud topic, its results, i.e. the
patterns, describe a systematic methodology for migrating on-premise applications
into the cloud and multi-cloud. The patterns depict deployment strategies but do not
consider the application as whole from an NFR perspective. This aspect led us to not
use these patterns for our work as our approach considers more than just deployment
strategies, namely the initial decomposition of the application in order to render it
multi-cloud aware whilst respecting the NFRs assigned to it.

Table 6. Vendor agnostic patterns – Cloud Computing Design Patterns

Name CloudPatterns.org – Cloud computing Design Patterns [7]

Description CloudPatterns.org is a community site dedicated to documenting a master patterns
catalog comprised of design patterns that capture and modularize technology-
centric solutions distinct or relevant to modern-day cloud computing platforms and
business-centric cloud technology architectures.

Usefulness
for DECIDE

CloudPatterns.org is a large collection of well-known design patterns that tackle the
specific problems of contemporary delivery and deployment of cloud applications.
The way that the patterns are decomposed and presented, follows the same
approach as the DECIDE project and is a valuable resource of available patterns for
the ARCHITECT module.

2.2 Vendor Specific Patterns

The following are pattern projects belonging to vendors with a widespread use. The vendor specific
patterns or platform specific patterns (PSP) are relevant as they give detailed instructions on how to
implement these patterns on the infrastructure in question. The content of this section has been
updated with respect to D3.1 [1].

Table 4. Vendor specific patterns - AWS Cloud Design Patterns

Name AWS Cloud Design Patterns [8]

Description The AWS Cloud Design Patterns (CDP) are a collection of solutions and design ideas
for using AWS cloud technology to solve common systems design problems. The CDPs
are categorized by type of problem they are addressing and most are specific to the
AWS infrastructure.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 14 of 59

www.decide-h2020.eu

Usefulness
for DECIDE

This collection will proof useful when the developer wants to deploy their application
on the AWS cloud. Some patterns are also generic enough that their use with other
providers seems feasible. However, since these patterns only focus on the
deployment with a single cloud provider, they have to be adapted to a multi-cloud
approach if possible.

Table 5. Vendor specific patterns - Microsoft Azure Cloud Design Patterns

Name Microsoft Azure Cloud Design Patterns [9]

Description The Microsoft Azure CDPs are categorized into “Challenges in cloud development”;
some of these categories equal NFRs like Availability and Resiliency. Each pattern
describes the problem that the pattern addresses, considerations for applying the
pattern, and an example based on Microsoft Azure. Most of the patterns include code
samples or snippets that show how to implement the pattern on Azure. However,
most of the patterns are relevant to any distributed system, whether hosted on Azure
or on other cloud platforms.

Usefulness
for DECIDE

Like the AWS CDPs, these will be primarily useful for a deployment on Azure, but
patterns descriptions are mostly general enough to be used on any cloud platform
and since these descriptions are very in-depth they seem to be quite useful to decide
which patterns ARCHITECT should suggest when. However, since these patterns only
focus on the deployment with a single cloud provider, they have to be adapted to a
multi-cloud approach if possible.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 15 of 59

www.decide-h2020.eu

 Multi-Cloud Native Application Architectures

The DECIDE project aims at tackling the issues that arise when dealing with multi-cloud native
applications. Multi-cloud native applications are different from traditional cloud native applications as
they are architected to be deployed on multiple, potentially heterogeneous clouds. The DECIDE project
defines a multi-cloud native application as a distributed one whose components are deployed on
different CSPs but still work in an integrated and transparent way for the end-user.

Companies nowadays are broadening their perspective on the use of different cloud services providers
(CSPs) and adopting multi-cloud strategies in order to benefit from the best and most suitable cloud
properties. That said, by adopting a multi-cloud approach and applying multi-cloud architectural
characteristics to applications, leveraging non-functional requirements (e.g. cost, scalability, geo-
presence, and data location) becomes feasible and provides a number of other benefits, such as:

• Utilising an on premise, hybrid, public and private clouds mix

• Utilising unique vendor-specific services

• Creating diversity while enabling redundancy and avoiding vendor lock-ins and latency

• Easy and faster disaster recovery

In general, adopting a multi-cloud strategy might seem basic but it is important to note that in the
context of DECIDE it does not involve replicating existing applications (distributed or not) over several
clouds (e.g. an application with high workloads is replicated and receives requests through a load
balancer). Rather the focus in this project addresses issues that extend such a strategy, namely by
deploying parts (i.e. microservices) of an application onto different cloud service providers with
different capabilities by matching these capabilities to the developer’s needs.

Figure 1 depicts the evolution in software development and deployment. There is a large difference
between cloud native application and multi-cloud native architectures and deployments. It starts off
with depicting a monolithic application (a)), b) depicts a distributed application in the traditional sense,
c) depicts a microservices-based cloud native application, d) depicts a distributed application
replicated or scaled across two CSPs and finally e) depicts a multi-cloud application’s architecture and
deployment as defined by the DECIDE project.

With this strategy1, i.e. multi-cloud architecture and its deployment, considerations must be made
regarding the architectural challenges and decisions that allow an application with its microservices to
be seamlessly deployed and adapted across different CSPs.

1 A pre-requisite for a multi-cloud strategy is a distributed application that is loosely coupled with
stateless properties.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 16 of 59

www.decide-h2020.eu

VM

CSP4

VM

CSP1

Container

CSP2

Container

CSP3

VM

CSP6

VM

CSP7

Container

CSP5

VM

CSP4

MS1 MS2 MS3

MS4 MS5 MS6

MS6

MS2

MS5MS4

MS3MS1

MS6

MS2

MS5MS4

MS3MS1

VM
CSP1

VM
CSP2

Load Balancer/Cluster
Manager

a) Monolithic application b) Distributed application

e) Multi-Cloud Application

c) Distributed Cloud Native Application

d) Multi-Cloud Application
Replication/Clustering

Figure 1. Evolution of Software Development and Deployment

The challenges that arise when designing a multi-cloud application are listed below and form the basis
for all considerations when designing an application in the context of DECIDE:

• Resilience and portability of the components or microservices of an application; when porting
processes across clouds MTTR must be decreased, disconnected scenarios and faults have to
be avoided. In addition, cost effective deployment of the application, by abstracting from cloud
vendor specifics and without having to manually adapt to new interfaces must be a given.

• Respecting the applications defined NFRs.

• The applications components (e.g. microservices) should work together in an integrated
manner. Microservices’ endpoints must be managed and discoverable in case of switching
hosts (IP addresses).

• Just as the portability of microservices, data migration or replication should be easily handled
and not pose a problem

• The use of provider specific SaaS and IaaS services, because of each service providers
intricacies (e.g. different APIs, data storage), should be possible.

• Dynamic re-configuration of the application properties should be possible.

Further challenges address standardisation efforts for allowing portability among clouds and the
management of multi-cloud strategies (these will be partly addressed in this work package, but also in
a future deliverable).

In view of the fact that the outlined multi-cloud approach and its exploitation may be unfamiliar to
most developers, the availability of Cloud offerings (features and service characteristics) are not
comparable and providers or operators do not have a holistic view on things, it would be necessary to
use patterns at the design stage of an application. Firstly, to improve applications from an architectural
perspective and secondly, to enable new developers to easily understand the source code and
deployment scenarios, as they would better understand the architectural approaches taken. Lastly, it

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 17 of 59

www.decide-h2020.eu

is worth noting that with a set of patterns common various pitfalls when designing a multi-cloud
application can be mitigated.

In essence, the architectural patterns we will be proposing cover the aforementioned aspects in order
to render an application multi-cloud. Architectural patterns should be regarded as solutions or best
practices for commonly occurring problems [2]. With a pattern based approach we can additionally
simplify and guide developers in the use of the DECIDE DevOps framework.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 18 of 59

www.decide-h2020.eu

 Cloud Computing Architectural Patterns for Multi-Cloud Apps

As explained in D3.1 [1], an architectural pattern provides a general, reusable solution to a commonly
occurring problem in the development or deployment of software components.

The use of architectural patterns in the context of object-oriented programming and distributed
applications has dramatically improved many aspects in software and systems engineering, such as
their quality, speed maintainability and accessibility. For the same reason, a large number of Cloud
Computing architectural patterns have been developed by [2] and others as presented in Section 2.

We can distinguish between two types of patterns, those that provide a description or template for
solving a particular problem and are independent of the implementation details (Cloud Provider
Independent Patterns (CPIP)) and those that target specific implementation techniques or rely on the
use of specific software components (Cloud Provider Specific Patterns (CPSP)).

With the former (CPIP) the formulation of high-level solutions that cover a broad problem space is
possible, whereas with the latter (CPSP) tailored solutions are provided, for instance to optimize an
application in a very specific context.

In this deliverable, we will be looking at CPIP in the context of multi-cloud. For readability purposes,
and in order to present a self-contained document as well as to get a complete idea of the pattern
compendium that DECIDE has gathered, content from D3.1 [1] has been reused. New patterns in
section 4.2 are clearly identified with (new). Section 4.3 is completely new for this version of the
deliverable.

4.1 Definition of Multi-Cloud Architectural Patterns

In the context of Cloud Computing, patterns that address distributed applications are not in a broad
sense addressing multi-cloud. These patterns when applied render the application a distributed one
running on a single Cloud but not necessarily able to be distributed over multiple Cloud Service
Providers.

For further elaboration, one could consider the following example: a distributed application, in a
traditional sense, can just as well reside on one virtual machine (VM) where the components of the
application listen on different ports on the same machine. This is something that is not effective,
because the application would not benefit from the IDEAL (see [10]) properties and would not exploit
the advantages of the essential cloud characteristics as defined by NIST [11].

One of the drawbacks resulting from a 1 VM instance deployment is the fact that the elasticity
characteristic of Cloud Computing can only be partially supported. With elasticity, the resources
(performance) provided for the application should be easily scaled up or out2 in a flexible manner in
order to cater to the currently experienced workload. With the lack of distribution in this deployment
scheme (1 VM and 1 single cloud provider, application tailored for 1 single cloud provider), scaling out
is not possible and therefore reacting to failures becomes difficult [10].

Therefore, in this project we define a collection of architectural patterns consisting of a number of
cloud patterns for distributed applications (and presumably non-cloud patterns) that collectively
address the multi-cloud issue as defined in the DECIDE project. These patterns have been selected
from different sources ([2] [12] [13] [9] [8]) presented in the state of the art analysis in Section 2 and
supplemented by additional ones that have been deemed necessary by the project’s consortium.

2 Scaling out means increasing the number of resources to adapt to a specific workload by creating additional
instances. Scaling up means to increasing the capabilities of a single cloud resource.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 19 of 59

www.decide-h2020.eu

In the next sub-sections, we define and describe the architectural patterns relevant in a multi-cloud
environment and those that are in scope with our project goals. The comprehensive description of the
patterns can be found in [2]. Those that have been produced in the DECIDE project are introduced
below in their respective sections.

4.2 DECIDE Patterns

4.2.1 DECIDE Fundamental Patterns

The DECIDE fundamental patterns are mandatory for the use of the DECIDE DevOps Framework. They
follow the DevOps principles adopted and reflected by the DECIDE tools and render the application
compatible for the use of the DECIDE DevOps Framework, i.e. the application should be architected in
a way that it can be seamlessly re-adapted and re-deployed in a multi-cloud environment. Moreover,
the fundamental patterns allow to meet a number of different NFRs such as scalability, availability,
cost, and location.

This section introduces fundamental concepts, explains their necessity and lists the patterns that need
to be implemented in order to support these concepts.

Separation of Concern and Distribution

When one looks at the concept of multi-cloud from an architectural perspective it is primarily
important that applications implement the concept of separation of concern. It is essential for
maintaining and deploying systems on multiple cloud platforms with minimal effort [5].

The outdated concept of monolithic architectures and their deployments can lead to immense reduced
performance and availability when any one service or solution component suffers an outage or a
runtime exception [12].

With separation of concern, an application becomes easily modularised and thus distributed. This
allows developers to leverage the specifics and intricacies of cloud resources based on the current
needs and, of course, the non-functional requirements of each individual component or microservice.
Currently the implementation of microservices to address this issue is regarded as the best choice to
date. Designing software applications as several suites of independently developed and deployed
services [14] fulfils our concern here and matches the DevOps approach followed in the DECIDE
project.

The following patterns address this issue:

Table 6. DECIDE Fundamental Patterns for Separation of Concern and Distribution

Pattern Name Short Description

Distributed Application A cloud application divides the provided functionality among
multiple application components that can be scaled out
independently.

Two-Tier Cloud Application Presentation and business logic is bundled to one stateless tier
that is easy to scale. This tier is separated from the data tier
that is harder to scale and often handled by a provider-supplied
storage offering.

Three-Tier Cloud Application3 The presentation, business logic, and data handling are realized
as separate tiers to scale stateless presentation and compute-

3 The patterns Two-Tier and Three-Tier Cloud Application rule each other out.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 20 of 59

www.decide-h2020.eu

Pattern Name Short Description

intensive processing independently of the data tier, which is
harder to scale and often handled by the cloud provider.

Loose Coupling A communication intermediary separates application
functionality from concerns of communication partners
regarding their location, implementation platform, the time of
communication, and the used data format.

Containerized Services

In general, containerization technologies have significantly simplified and improved DevOps as they
provide a solution to deployment problems caused by the lack of dependencies in production
environments.

In addition to this, adopting a multi-cloud strategy emphasises the need for agility and leveraging the
cloud resources based on the individual non-functional requirements of microservices.
Containerization can aid in this context, because with containerization building and deploying a service
becomes much easier and the services can be independently deployed and scaled [13].

Furthermore, high-performance recovery is given as containers are extremely fast to build and start.
In addition to this, containers are much more cost-effective than VMs as the latter can impose a
significant footprint by introducing a layer of intermediate processing [12] that ultimately can further
increase costs.

Container-based orchestrators like the ones provided by some Cloud Services are indispensable for
any production-ready microservice-based and for any multi-container application with significant
complexity, scalability needs, and constant evolution [15].

Containers boost DevOps, by offering a significant advantage in the following key areas:

• Portability

• Service or Application Density

• Fault tolerance and Resilience through Fault Isolation and rapid replacement of faulty
containers

• Suitability for Automation

For the use of the DECIDE Framework this is a fundamental pattern, because the ADAPT tool’s
mechanisms are built to deploy containerized services. As with the list above containers can simplify
re-deployment.

The pattern containerization is a fundamental one in this case and describes the best-practices to
package and deploy services. The following details said pattern and it is described using the pattern
language as in [2]. The pattern is described in Table 7 and is derived from the following sources: [12]
[13] [15] [16].

Table 7. DECIDE Fundamental Pattern for Containerized Services

Pattern Name Containerization

Short Description Container-based solutions provide the important benefit of cost savings
because containers are a solution to deployment problems caused by the

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 21 of 59

www.decide-h2020.eu

Pattern Name Containerization

lack of dependencies in production environments. Containers significantly
improve DevOps and production operations.

Context A container management system or container engine is used for the
deployment and operation of containers.

Problem How can an environment be provided with maximum support for services
with high-performance recovery and scalability requirements?

Services deployed on bare metal or virtual servers can impose a significant
footprint. Virtualization improves portability but introduces a layer of
intermediate processing that can further increase the footprint. Monolithic
solution deployments can lead to widespread reduced performance and
availability when any one service or solution component suffers an outage
or a runtime exception.

Solution Services are deployed independently, or together with composed services,
as autonomous units that are packaged into independently manageable
and autonomous container images, each of which includes the services’
underlying system dependencies. Tooling is provided to manage the
building, deploying and operating of the containers.

External Configuration Storage

Application and application instances (i.e. microservices) in a multi-cloud environment need to be
scaled out as well as ported from one CSP to another in order to satisfy the given NFRs.

The configuration of a multi-cloud application does not only lie in the functional parts but also the
deployment on and provisioning information for the underlying infrastructure [5] and services.

It is usually the case that the functional, deployment and provisioning configurations are stored in the
application or its instances.

Examples of configuration elements include database connection strings, UI theme information, target
CSPs, network locations, URIs or external APIs or the URIs of queues and storage used by a related set
of applications [9].

It has been often demonstrated that it is challenging to manage changes to local configurations across
multiple running instances of an application, especially in a cloud-hosted scenario. It can on one hand
result in instances using different configurations settings while an update is still being deployed or on
the other hand result in unnecessary redeployment resulting in drastic costly downtime.

Another point to be made is that with local configuration files the configuration is limited to a single
instance, but it is sometimes beneficial to reuse these configurations settings across multiple
applications or application instances [9] .

These problems can be solved by moving all relevant configuration information out of the application
package and into a centralized location. Advantages with this approach, lie in giving easy access to
deployment tools, enabling dynamic re-deployment and re-adaptation.

When outsourcing configuration information into a centralized location it is important to consider the
following:

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 22 of 59

www.decide-h2020.eu

F1. Provide an interface that can be used to quickly and efficiently read and update configuration
settings.

F2. The type of external store depends on the hosting and runtime environment of the application.
In a cloud-hosted scenario it's typically a cloud-based storage service, but could be a hosted
database or versioning system (e.g. Git – repositories for source control).

F3. The format of the configuration information (i.e. files) should be properly documented,
validated and structured.

F4. Access control should be put in place in order to protect configuration data and enough
flexibility provided to store versions of configuration (e.g. development, staging, production
and releases).

With these points implemented, the DECIDE Framework can re-deploy and re-adapt the application
cost effectively and with minimal downtime. The pattern to be implemented for the external
configuration storage concept is Managed Configuration.

Table 8. DECIDE Fundamental Patterns for External Configuration Storage

Pattern Name Short Description
Managed
Configuration

Scaled-out application components should use a centrally stored configuration to
provide a unified behaviour that can be adjusted simultaneously.

Service Registration and Discovery

In a traditional distributed system deployment, components communicate with one another and rely
on functionality or data provided by other components. Components and services run at fixed, well
known locations (hosts and ports) and can easily call one another using HTTP/REST or some form of
RPC [13]. However, in a modern multi-cloud and microservices -based deployment, network locations
of the components are dynamic and change frequently.

This is due to the fact that dynamic IP addresses are usually assigned to containers and virtual machines
alike. Furthermore, re-deployments occur frequently throughout a single day due to specific NFRs that
need to be met. For instance, workloads change throughout the day and thus suitable cloud providers
are selected for a re-deployment to fulfil the currently needed resource capacities and to keep costs
down.

This results into dynamic changes in the number of service instances along with the allocation of new
network locations. In order to make clients easily and seamlessly able to determine the location of the
service to which they send requests and service instances to register their new location, a mechanism
is needed to make the services that have changed their network location, discoverable in an easy and
simple manner.

This concept is not fundamentally necessary for the functioning of the DECIDE Framework but it allows
for the seamless functioning of clients and services when a re-deployment takes place. Therefore, we
consider it as a fundamental multi-cloud pattern.

The patterns below in Table 9 address this issue.

Table 9. DECIDE Fundamental Pattern for Service Registry and Discovery

Pattern Name Short Description
Service Registry Implement a service registry, which is a database of services, their instances

and their locations. Service instances are registered with the service registry on

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 23 of 59

www.decide-h2020.eu

Pattern Name Short Description
start-up and deregistered on shutdown. Client of the service and/or routers
query the service registry to find the available instances of a service. A service

registry might invoke a service instance’s health check API to verify that it is
able to handle requests.

Client-side Discovery When making a request to a service, the client obtains the location of a service
instance by querying a Service Registry, which knows the locations of all
service instances.

Server-side Discovery Services typically need to call one another. In a monolithic application, services
invoke one another through language-level method or procedure calls. In a
traditional distributed system deployment, services run at fixed, well known
locations (hosts and ports) and so can easily call one another using HTTP/REST
or some RPC mechanism. However, a modern microservice-based application
typically runs in a virtualized or containerized environments where the number
of instances of a service and their locations changes dynamically.

4.2.2 DECIDE Optimization Patterns

Optimization Patterns are those that aid the developer in improving the applications NFRs by taking
adequate measures in optimizing the application code to reflect on these requirements.

Optimization patterns can be of multi-cloud nature but their design could also optimize the use of
cloud resources, such as elasticity.

An example is using the cloud persistence layer instead of implementing it as part of the application.
Optimizations could therefore consist of the use of SaaS of parts of the application system.

Table 10. DECIDE Optimisation Patterns

Pattern Name Short Description NFR

Provider Adaptors Provider interfaces are encapsulated and mapped
to unified interfaces used in applications to
separate concerns of interactions with the provider
from application functionality.

Availability

Elasticity Manager The utilization of IT resources on which an
elastically scaled-out application is hosted, for
example, virtual servers are used to determine the
number of required application component
instances. This is an optimization for the
deployment.

Scalability

Resiliency Management
Process

Application components are checked for failures
and replaced automatically without human
intervention.

Availability

Elastic Load Balancer The number of synchronous accesses to an
elastically scaled-out application is used to
determine the number of required application
component instances.

Availability,
Scalability

http://www.decide-h2020.eu/
http://microservices.io/patterns/observability/health-check-api.html

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 24 of 59

www.decide-h2020.eu

Pattern Name Short Description NFR

Elastic Queue The number of asynchronous accesses via
messaging to an elastically scaled-out application is
used to adjust the number of required application
component instances.

Scalability

Cross-Storage Device
Vertical Tiering (new)

A system is established whereby the vertical scaling
of data processing can be carried out dynamically
across multiple cloud storage devices.

Scalability

Dynamic Data
Normalization (new)

Data received by cloud consumers is automatically
normalized so that redundant data is avoided and
cloud storage device capacity and performance is
optimized.

Performance

Direct I/O Access (new) The virtual server is allowed to circumvent the
hypervisor and directly access the physical server’s
I/O card.

Performance

Direct LUN Access (new) The virtual server is granted direct access to block-
based storage LUNs via the physical host bust
adapter card.

Performance

Micro Scatter-Gather
(new)

A root container is utilized with special distributor
and aggregator cloud services designed to compose
and interact with multiple cloud services and cloud
service instances, thereby carrying out the
necessary high-performance composition logic.

Performance

4.2.3 DECIDE Development Patterns

Development Patterns are those that aid the developer with best practices for building a multi-cloud
application. Example patterns are n-tier architectures (splitting the application into microservices),
loose coupling, stateless.

There are at least some basic development patterns that obviously should be applied to all multi-cloud
applications:

Table 11. DECIDE Development Patterns

Pattern Name Short Description NFR

Data Access Component Functionality to store and access data elements is
provided by special components that isolate
complexity of data access, enable additional data
consistency, and ensure adjustability of handled
data elements to meet different customer
requirements.

Scalability

Compliant Data Replication Data is replicated among multiple environments
that may handle different data subsets. During
replication data is obfuscated and deleted
depending on laws and security regulations. Data

Location

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 25 of 59

www.decide-h2020.eu

Pattern Name Short Description NFR

updates are adjusted automatically to reflect the
different data structures handled by environments.

Stateless Component State is handled outside of the application
components to ease their scaling-out and to make
the application more tolerant to component
failures.

Scalability
(Elasticity)

User Interface Component Interactive synchronous access to applications is
provided to humans, while application-internal
interaction is realized asynchronously when
possible to ensure Loose Coupling. Furthermore,
the user interface should be customizable to be
used by different customers.

Availability,
Scalability

Processing Component Possibly long running processing functionality is
handled by separate components to enable elastic
scaling. Processing functionality is further made
configurable to support different customer
requirements.

Scalability

Usage Monitoring (new) Cloud usage monitors are utilized to track and
measure the quantity and nature of runtime IT
resource usage activity.

Availability
Performance

Service State Management
(new)

The cloud service is designed to integrate with a
state management system allowing it to defer
state data at runtime when necessary so as to
minimize its IT resource consumption.

Performance

Dynamic Failure Detection
and Recovery (new)

A watchdog system is established to monitor IT
resource status and perform notifications and/or
recovery attempts during failure conditions.

Availability

Multipath Resource Access
(new)

Alternative paths to IT resources are provided to
give cloud consumers a means of programmatically
or manually overcoming path failures.

Availability

Resource Pooling (new) An automated synchronization system is provided
to group identical IT resources into pools and to
maintain their synchronicity.

Availability

Synchronized Operating
State (new)

A composite failover system is created to not rely
on clustering or high availability features but
instead use heartbeat messages to synchronize
virtual servers.

Availability

Cloud Storage Data at Rest
Encryption (new)

Secure data on the physical hard disks in order to
prevent unauthorized access.

Availability

Cloud Storage Data Lifecycle
Management (new)

A solution is introduced to automatically manage
and migrate the data into a different type of cloud

Availability

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 26 of 59

www.decide-h2020.eu

Pattern Name Short Description NFR

storage device, or delete the data based on its
state in a defined lifecycle.

Cloud Storage Device
Masking (new)

A solution is implemented to isolate each cloud
storage device from being presented to or
accessed by unauthorized cloud consumers.

Availability

Cloud Storage Device
Performance Enforcement
(new)

A solution is implemented with the ability to match
and compare the performance characteristics of
datasets against performance capabilities of a
destination cloud storage device.

Performance

Cloud Resource Access
Control (new)

A cloud single sign-on (SSO) architecture is
established, incorporating an authentication
gateway service (AGS) and attribute authority for
implementation of cloud resource access control.

Availability

Cloud VM Platform
Encryption (new)

Encrypted containers are provided for use and
storage of the various types of VM backups and
replications.

Availability

Geotagging (new) When trusted resource pools are generated, the
geolocation is supplied as part of the compliance
and regulatory assurance attributes.

Location

In-Transit Cloud Data
Encryption (new)

A solution is implemented with capabilities that
secure and protect data while it transfers between
sender and receiver and also ensure that data will
not be accepted by the receiver if the original data
sent is modified.

Availability

Trusted Cloud Resource
Pools (new)

Trusted resource pools made up of trusted
geotagged computers are made available by the
cloud provider, and can be verified by the
consumer through direct monitoring or evidence
through auditing.

Availability

Automatically Defined
Perimeter (new)

A system is established that provides protected
communications between consumers and
providers whereby each provider either accepts or
rejects communications based on privileges
securely granted automatically by a perimeter
controller.

Availability

Cloud Authentication
Gateway (new)

An authentication service is implemented, allowing
standard authentication, communication, and
session establishment from a cloud consumer to
the authentication service. The authentication
service then authenticates to the cloud resource
on behalf of the cloud consumer using the diverse
protocols required by the cloud provider.

Availability

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 27 of 59

www.decide-h2020.eu

Pattern Name Short Description NFR

Cloud Key Management
(new)

A cloud key management system is employed,
available either as a physical or virtual network
attached device.

Scalability

Leader Node Election (new) One of the invoked cloud service instances is
designated as the leader node, responsible for
aggregating the other cloud service instances in a
coordinated effort to complete the task.

Scalability

4.2.4 DECIDE Deployment Patterns

Deployment Patterns address how the deployment configuration for multi-cloud applications should
be handled. For instance, managing the deployment scripts as well as storing them should be designed
from a multi-cloud perspective. Here types of technological risks as well as geographical locations of
the components (data or business logic) are accounted for.

Furthermore, the deployment patterns will take into account DECIDE principles of re-adaptability and
re-deployment for multi-cloud environments.

Table 12. DECIDE Deployment Patterns

Pattern Name Short Description NFR

Content Distribution Network Applications component instances and data
handled by them are globally distributed to
meet the access performance required by a
global user group.

Scalability,
Location

Hybrid User Interface Varying workload from a user group interacting
asynchronously with an application is handled
in an elastic environment while the remainder
of an application resides in a static
environment.

Scalability

Hybrid Processing Processing functionality that experiences
varying workload is hosted in an elastic cloud
while the remainder of an application resides in
a static environment.

Scalability

Hybrid Data Data of varying size is hosted in an elastic cloud
while the remainder of an application resides in
a static environment.

Scalability

Hybrid Backup Data is periodically extracted from an
application to be archived in an elastic cloud for
disaster recovery purposes.

Scalability

Hybrid Backend Backend functionality comprised of data
intensive processing and data storage is
experiencing varying workloads and is hosted in
an elastic cloud while the rest of an application
is hosted in a static data centre.

Scalability

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 28 of 59

www.decide-h2020.eu

Pattern Name Short Description NFR

Bare-Metal Provisioning
(new)

Specialized discovery and deployment agents
can be utilized within the remote bare-metal
provisioning system to locate and provision
available bare-metal servers with operating
systems dynamically.

Scalability

Platform Provisioning (new) A system can be established whereby ready-
made platforms with packaged, pre-configured
IT resources can be provided as turn-key
environments for cloud consumers that do not
wish to assume significant administrative
responsibilities.

Scalability

Intra-Storage Device Vertical
Data Tiering (new)

A cloud storage device capable of supporting
multiple disk types is used to enable dynamic
vertical scaling confined to the device.

Scalability

Storage Workload
Management (new)

A storage capacity system is provided to
distribute runtime workloads between different
cloud storage devices, across the network, and
to enable LUNs to be divided and managed.

Scalability,
Performance

Redundant Physical
Connection for Virtual Servers
(new)

A redundant, physical backup network
connection is established for virtual servers

Availability

Virtual Server Connectivity
Isolation (new)

The virtual server is not allowed to connect to
any part of the solution that has a
communication path to the external network or
internal network, outside of what is required

Availability

Virtual Server-to-Virtual
Server Affinity (new)

Affinity rules are used to ensure that the virtual
server group or bundled workload is always
hosted by and moved to the same destination
host.

Location

Virtual Server-to-Virtual
Server Anti-Affinity (new)

Anti-affinity rules are used to ensure that the
virtual servers or bundled workload are never
simultaneously hosted together by the same
destination host.

Location

Cloud Denial-of-Service
Protection (new)

A cloud DoS protection service is incorporated
into the security architecture to shield the cloud
provider from DoS attacks.

Availability

Secure Connection for Scaled
VMs (new)

A system can be established by controlling
network traffic moving in and out of the VM
using firewall agents or operating system
firewalls. This will create a portable security
solution that is location independent and scales
as VMs are created.

Scalability

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 29 of 59

www.decide-h2020.eu

Pattern Name Short Description NFR

Trust Attestation Service
(new)

An attestation service is implemented to
maintain a trust policy for every attested host
and to evaluate reports from the hardware
roots of trust from trusted platform modules
(TPMs) on each node to determine whether
each node has undergone a trusted boot and is
in compliance with the security policy.

Availability

Single Node Multi-Containers
(new)

All composition participants are deployed in
individual containers allowing each to scale
independently and as required to fulfill high-
performance requirements.

Performance

4.3 Inferring DECIDE patterns from NFRs

The collection of architectural patterns that we provide is only one part of the solution since not all of
those patterns are applicable or even desirable for all kinds of applications and environments. The final
decision maker, designer and implementer of the application is the person or team that we call, in the
context of this deliverable, the “developer”. It is the purpose of the DECIDE project, though, to guide
the developer into making informed decisions on which patterns she should apply based on the
application’s nonfunctional requirements (NFRs) and at which part of the application development
cycle should each pattern be applied.

In order to provide those pattern suggestions, we require from the developer to define at least a
specific set of abstract properties for each NFR that will be used as input to the pattern inferring
algorithm. We also classified each pattern based on which part of the development process each
pattern should be applied. Lastly, we added a set of properties on each pattern that denote the impact
of each pattern to the NFRs.

Based on the NFR properties as input and the pattern properties as weighting factors, the inferring
algorithm can provide a prioritized set of mandatory and optional patterns that should/could be
applied to the application for the successful fulfillment of the application’s requirements.

In the rest of this new section, we will first define the goal of the inferring algorithm and, more broadly
the ARCHITECT module as a whole, we will describe the whole process that starts at the definition of
the NFRs and ends at the presentation of the ARCHITECT results, we will define in detail the NFR
properties as well as the pattern properties that are relevant to this process and, lastly, we will describe
the pattern inferring algorithm itself along with the presentation of the results.

4.3.1 Goals

The two main goals of this module as part of the DECIDE project can be defined as following:

1. Provide a repository of architectural patterns that can be applied in the context of multi-cloud
applications

2. Suggest a set of architectural patterns to the developer based on the non-functional
requirements as defined by the developer herself

Additionally, and in order to make those suggestions more relevant and help the developer to make
informed decisions on the actual application of those patterns, we define three secondary goals

1. Define the minimum set of patterns that should be used in order to fulfil the NFRs

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 30 of 59

www.decide-h2020.eu

2. Give an additional set of optional patterns that could be used without lowering the NFRs
3. Categorize those suggestions based on the part of the development process that each pattern

is relevant to.

Those goals can be achieved through the pattern inferring process that we describe in the next section
and with the help of the ARCHITECT tool that acts as the user interface for the process.

4.3.2 Process

As described in section 4.2 there are a multitude of architectural patterns that can be applied in the
context of a multi-cloud application. The set of patterns that we presented in that section is only the
preexisting knowledge that should be distilled based on the requirements and transformed into a set
of useful patterns for a given input. We will call this process the “pattern inferring process”.

The pattern inferring process starts with the gathering and classification of the architectural patterns
that can be applied in the context of a multi cloud application. In the context of this project, the results
of this step is the collection of patterns that has been presented in section 4.2. That section contains
only the short description of each pattern, the full description along with all the properties like
“problem statement”, “solution”, “reference” or “model” is part of the actual knowledge repository
that is being delivered as part of the software implementation of the ARCHITECT module. The patterns
in the repository have already been classified based on the part of the development process that they
are applicable (development, deployment, optimization, fundamental).

Moreover, each pattern has two properties that describe the impact of the pattern to the NFRs. Those
properties are called “provides” and “requires” and their notion and meaning is described in the next
sections. In the context of the process, those properties act as weighting factors to the decision process
of the pattern inferring algorithm.

The second step of the process is the definition of the NFR properties. The NFRs, in the context of the
DECIDE project, are classified into the following classes:

• Availability

• Scalability

• Performance

• Cost

• Location

Furthermore, each NFR has at least an abstract value and a real value that should be given by the
developer as input. The notion of the usefulness of those values is described in the next section.

The third step of the process is the actual inferring of the set of patterns that are useful to the
application based on the NFRs and the existing knowledge repository. This step is implemented by the
pattern inferring algorithm. The main functionalities of this algorithm are the following three:

1. Select an initial superset of patterns that, when applied, can fulfill the given NFR properties
2. Prioritize the patterns in this set based on the impact that each pattern has to the given NFR

properties
3. Define the minimum set of patterns that fulfil the given NFR properties and classify it as the

mandatory set. Classify the remaining patterns as part of the optional set.

More details on the algorithm can be found in the next sections.

The last step of the process is the presentation of the results as a grid of classified patterns. The
horizontal axis being the pattern classification “development”/”deployment”/”optimization”. The
vertical axis being the pattern classification “mandatory”/”optional”. This presentation is done via the

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 31 of 59

www.decide-h2020.eu

ARCITECT tool based on the results of the algorithm and the preexisting classification of the patterns
in the pattern repository.

4.3.3 NFR properties

The non-functional requirements, as given by the developer, serve as the input for the pattern inferring
process. Apart from a specific value for each NFR, in the context of architectural patterns, we also
define (and require) at least one more property that we call the “Abstract Value” which is measured
in qualitative terms (e.g. low/medium/high availability).

The notion behind the existence of the abstract value is that, in the context of architectural patterns,
the impact of each pattern to an NFR cannot be measured exactly but can only be described in abstract
terms (e.g. redundant database storage provides high availability). This holds true for all vendor
agnostic patterns. Only some vendor specific patterns could provide concrete numbers but even those
numbers should be taken with a grain of salt and not be considered as part of the preexisting
knowledge in the repository.

The basic NFR properties that we define in the context of the DECIDE project are the following:

• Abstract Value: The qualitative description of the NFR

• Value: The quantitative description of the NFR

• Unit: The relevant measurement unit of the “value” property

Each NFR has different possible values for each property since each NFR is defined by different metrics.
For example, the abstract value of availability is low/medium/high while the abstract value of location
is “single location”/”single country”/”cross border”. The value of performance can be measured in ms
(response time) while the value of cost can be measured in order of magnitude (0s)

Lastly, in the context of pattern inferring, the ordering can be either positive or negative depending on
the NFR. Availability, Scalability, Performance have positive ordering which means that the higher
abstract values are the better. Cost and Location have negative ordering which means that lower
abstract values are better. The detailed table of possible values and their ordering is given in the
appendix A. This distinction is taken into account during the pattern inferring algorithm during the
threshold operations.

4.3.4 Pattern properties

Regarding the actual architectural patterns, for the purposes of pattern inferring, we added two
properties that describe the impact of a specific pattern to a non-functional requirement. Apart from
the regular properties for each pattern, the detailed properties can be found in appendix A, we added
the properties “requires” and “provides”. The possible values for those properties are a specific NFR
and an abstract value as described in the previous section.

The property “provides” is a mandatory property and describes the impact that the application of this
architectural pattern will have to at least one NFR. For example “leader node election” provides “high”
“scalability”. Each pattern can have one or mode “provides” properties. On the other hand, there are
patterns that “require” a specific threshold in one or more NFRs (usually in terms of cost of location),
therefore those patterns have one or more “requires” properties. This means that the application of
that specific pattern is feasible only when a specific NFR threshold exists, therefore the inferring
algorithm will suggest it only if the developer adds this NFR as input.

The full list of properties for each pattern is part of the software implementation of the ARCHITECT
tool.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 32 of 59

www.decide-h2020.eu

4.3.5 Inferring algorithm

Based on the above definitions, the pattern inferring algorithm can be described. The comparison
operations of the NFR values take into account the positive or negative ordering depending on the
NFR.

Input:

1. A set of patterns. Each pattern has at least one “provides” property and zero or more
“requires” properties. Each “provides”/”requires” is an “abstract value” of an NFR

2. A set of NFRs. Each NFR has an “abstract value”

Steps:

1. For each NFR
a. Get the set of patterns from the repository that “provide” “at least” the “abstract

value”
2. Merge the pattern sets and remove the duplicate patterns
3. For each NFR, given the merged set

a. Remove the patterns that “require” “more” of the “abstract value”
4. Given the truncated set

a. Find the smallest set of patterns that “provide” “all” the “abstract values” (multiple
iterations)

b. Assign the set as the “mandatory set”.
c. Assign the remaining set as the “optional set”

5. Split the patterns in each set into their deployment/development/optimization classification
6. Return a 3x3 matrix

Output:

1. A 3x3 matrix of patterns. The horizontal axis is the deployment/development/optimization and
the vertical axis is the mandatory/optional

4.3.6 Presentation of results

The results of the pattern inferring process are presented to the developer via the user interface of
the ARCHITECT module. The developer can then select one or more of the suggested patterns and the
selection is written in the application description for further use from the rest of the DECIDE modules
(mainly OPTIMUS) as well as the developer herself. Further details can be found in the user manual of
the module in the appendix.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 33 of 59

www.decide-h2020.eu

 ARCHITECT Tool

The main purpose of the ARCHTECT tool is to help the application developer to prepare the application
for a multi-cloud runtime environment. To make the best out of the cloud provider offerings is often
very challenging. The ARCHITECT tool will try to propose patterns that are able to fulfil the non-
functional requirements of the application as described in the previous section.

Multi-cloud computing patterns have been introduced in this deliverable as cloud provider-
independent solutions to reoccurring problems in Cloud Computing. By using semantic technologies
for modelling patterns, NFRs and their relationships, the ARCHITECT tool is able to infer related multi-
cloud patterns to the developer. All patterns are semantically described in a pattern compendium
together with a set of NFRs.

This compendium contains also semantical relationships which allow matching of related patterns. In
further releases, the infer mechanism will be extended and optimized to incorporate more application
information by identifying specific problems that can be addressed by specific multi-cloud architectural
patterns. This step, however, requires detailed insight into the intricacies of the software architecture
at hand, the multi-cloud computing paradigm, the offerings of specific cloud providers, and the
utilization of the given application

Furthermore, based on the list of functional requirements, several use cases for the developer were
identified. These are mainly the creation of a new project, a change of NFRs or a change of selected
patterns of an already existing DECIDE project. Finally, the developer or the used CI tool should be able
to enter the next DECIDE phase in triggering OPTIMUS for the most appropriate deployment
configuration.

Figure 2. ARCHITECT Tool Use Cases

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 34 of 59

www.decide-h2020.eu

The following sequence diagram shows the “Create DECIDE Project” process. The other use cases are
more or less an integrated part of this use case. This is an updated version of that presented in D3.1
[1].

Figure 3. Use Case Create DECIDE Project

• The developer starts the creation of a new DECIDE project.

• The User Frontend part requests an initial Application Description from the Application
Manager.

• The User Frontend shows to the user a form that requires the general information about the
application, e.g. which micro-services are contained and how they are related to each other
and to the application in general.

• The User Frontend shows to the user the NFR Editor where she can select a set of prioritized
NFRs. The NFR Editor returns to ARCHITECT User Frontend with the selected list of NFRs.

• Based on the selected NFRs and the additional application information, a list of patterns is
suggested to the developer. This list contains both fundamental and inferred patterns.

• The developer is asked to select any patterns from the catalogue that should or must be
applied to the application design.

After the developer has finalized the list of applied patterns for the application, the User Frontend
finishes the creation process by persisting the final Application Description using the Application
Manager.

5.1 DECIDE Context

The ARCHITECT tool is used during the design and development phase of the application. It is logically
embedded into the DECIDE framework between the NFR editor and the OPTIMUS tool. Practically, the
ARCHITECT tool utilizes the given NFR Editor for collecting the requirements and triggers OPTIMUS for
entering the simulation phase:

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 35 of 59

www.decide-h2020.eu

Relationship to NFR Editor

ARCHITECT utilizes the NFR Editor for collecting the set of defined non-functional requirements from
the application developer. ARCHITECT expects as return value from the editor the list of NFRs that the
developer has selected.

Relationship to OPTIMUS

For a manual triggering of the simulation phase, ARCHITECT should be able to call OPTIMUS. The main
artefact transferred is the Application Description. Depending on the provided interface of OPTIMUS it
can either be referenced through the Git repository or be handed over as parameter in the API method.
The result will be returned using the same mechanism. The User Frontend and the Application
Manager (see Figure 4) may display the result in the current environment in an appropriate way.

5.2 Technical Description

ARCHITECT supports the developer with preparing the application for a multi-cloud deployment
scenario by providing and suggesting a set of (multi-)cloud patterns, which must or should be applied
to the application.

By means of the functional requirements, ARCHITECT is decomposed in several functional blocks and
interfaces. The ARCHITECT component has a set of functional requirements that can be summed up in
the following functionalities:

• Provide/recommend to the user (i.e. developer) architectural patterns based on his/her
prioritized NFRs and additional information (supplied by the user), with guidelines on how to
apply them, to which component these need be applied and in which order. This should be
performed through a UI.

• Provide a repository of relevant multi-cloud patterns.

Beside these functional requirements, ARCHITECT will help to initiate the development of an
application in the context of DECIDE. This includes the creation of the DECIDE project artefacts, mainly
consisting of the Application Description contained in a Git repository.

Figure 4. ARCHITECT Tool Architecture

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 36 of 59

www.decide-h2020.eu

ARCHITECT consists of three core elements. A frontend for user interaction, an application description
manager for dealing with the DECIDE project model, and finally the patterns catalogue with the pattern
inference engine.

ARCHITECT itself does not provide any external interfaces. Nevertheless, at least the Patterns
component will be implemented as an autonomous library and its functionality could be offered as a
micro-service in order to be accessible for other implementations. This allows an easy integration of
ARCHITECT in a polyglot environment. Nevertheless, ARCHITECT does consume two interfaces, one
from the NFR Editor and the other from the OPTIMUS component.

The Implementation is separated in three different projects (code repositories) representing the three
main components of the architecture of the tool. Depending on their usage scenario, they are
packaged with different purposes:

User Frontend

This element depends on the usage context. E.g. if ARCHITECT is integrated in an IDE, this part provides
the mechanism of how the ARCHITECT component is plugged in. The main task is the interaction with
the developer and provides necessary user interfaces to collect and maintain all general application
information and to enable the use cases. The User Frontend is the workflow-controlling component of
the ARCHITECT.

As a first step, the frontend is developed as an Eclipse Plugin. Therefore, it follows the common Eclipse
development guidelines for plugins and is implemented in Java. In this release an alternative front end
is also developed as a web application embedded in a “DECIDE Dashboard” component.

Application Manager

This element is responsible for a convenient abstraction level for the information model of the DECIDE
application. It manages all application information in a persistent manner. That means, it encapsulates
and hides the technical details, e.g. the fact that the application is coded and stored as a JSON structure
inside a Git repository. The Application Manager encapsulates the Git repository functions and offers
a convenient API for dealing with the Application Description JSON file. Most other components of
DECIDE need similar functionality. Therefore, this module is provided as a small Java library which
guarantees a high reusability.

Patterns

This element contains a catalogue of patterns, NFRs and their relationships. The contained information
can be enriched to hold additional information experienced over time. The patterns catalogue provides
functions that allow the inferring of patterns based on a given set of NFRs and optionally some fixed
patterns.

5.3 Functionality and Requirements Coverage

The following is the list of the functionality implemented in Year 2 of the project for the ARCHITECT
Tool:

F1. Creating an initial DECIDE application project
F2. Collecting and storing application meta information
F3. Detecting changes in the application meta information and react with new proposed pattern

recommendation when necessary
F4. Providing a pattern catalogue
F5. Recommend cloud patterns for the application

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 37 of 59

www.decide-h2020.eu

Table 13. Relationship between functionalities and requirements for the ARCHITECT tool

Functionality Req. ID4 Coverage
F1 WP3-ARCH-

REQ7
A DECIDE application project becomes manifested in a git repository
containing all meta information required for the framework. The
ARCHITECT tool prototype is implemented as an eclipse plugin, with an
appropriate wizard driven UI to collect necessary initial information
allowing the creation of the git repository and the contained initial
application description.

F2 WP3-ARCH-
REQ6, WP3-
ARCH-REQ7

The eclipse plugin (F1) provides a wizard driven form based approach to
allow the input of all required information by the developer. Validation
and completeness check is included if applicable.

F3 WP3-ARCH-
REQ7, WP3-
ARCH-REQ8

The prototype ARCHITECT tool is implemented as an eclipse plugin.
Changes are part of the application description stored in git. Almost all
changes are coming either from the tool itself or the NFR editor which is
triggered by the tool. For external changes, the eclipse plugin can apply
any functions when the git repository is updated (e.g. by pulling the
remote repo).

F4 WP3-ARCHI-
REQ1, WP3-
ARCH-REQ9,
WP3-ARCH-
REQ10

The prototype contains a separate library for managing a cloud patterns
compendium. Pattern, NFRs, application meta-information and their
relationships are described semantically in RDF format. The repository is
a triple store. A wrapper to provide the compendium also as microservice
is implemented.

F5 WP3-ARCHI-
REQ3

The cloud patterns compendium allows the inferring of related patterns,
based on a set of given NFRs. This is done by utilizing semantic
technologies and infer engines. Simple dependencies between NFRs and
multi-cloud patterns are identified and described in the compendium.

In addition to the implementation of these functionalities, ARCHITECT has defined and implemented
the iframe for the integration with the DevOps framework [KR1], as well as the means that implement
the interaction with the application description and OPTIMUS. Finally, bugs in the code have been
corrected.

4 The requirements for the ARCHITECT tool have been extracted from D2.2 – “Detailed Requirements
Specification”

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 38 of 59

www.decide-h2020.eu

 Conclusions

The deliverable at hand, as the second of three, provided an intermediate set of multi-cloud
architectural patterns taken from a number of sources that have been deemed relevant in our context.

The deliverable also discussed the notion and definition of multi-cloud applications as defined in the
DECIDE project. Furthermore, the benefits and challenges when adopting such a strategy have been
laid out. These challenges give way to underpinning the need and usefulness of architectural patterns
by which developers can be guided in the development, optimisation and deployment of an
application. Hereinafter the deliverable provides set of relevant architectural patterns that have been
selected for this matter.

Another aspect that has been discussed, is the need for specific architectural patterns for the use of
the DECIDE DevOps Framework and design the application to be multi-cloud aware and be
(re)deployed, monitored and (r-)adapted with no or minimal downtime. These are based on the
fundamental concepts: Separation of Concern and Distribution, Containerized Services, External
Configuration Storage and Service Registration and Discovery.

Furthermore, the deliverable gave a list of patterns that improve the development, deployment of the
application and ultimately optimize it for a multi-cloud scenario. These have been selected from a
number of previous projects and several resources as presented in the state of the art analysis.

The pattern inferring process that results in the suggestion of the architectural patterns that are
relevant to an application based on given NFRs has been described in detail and shown how it operates
as the basis of the ARHITECT tool.

The ARCHITECT Tool [KR2] that has been presented contains a wizard and a patterns compendium for
guiding the developer in designing and architecting her multi-cloud application. The compendium
describes patterns and their relationships using semantic technologies.

6.1 Future Work

In the next deliverable that follows we will be looking at how OPTIMUS can benefit from the pattern
selection in an automated way by leveraging the modelling of the patterns and their properties. Lastly,
the final version of the ARCHITECT tool integrated with OPTIMUS will be released.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 39 of 59

www.decide-h2020.eu

 References

[1] DECIDE Consortium;, “D3.1 Initial architectural patterns for implementation deployment and
optimization,” 2017.

[2] C. Fehling, F. Leymann, R. Ralph, W. Schupeck and P. Arbitter, Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud Applications, Springer, 2014.

[3] ARTIST Consortium, “The Artist Project,” 2014. [Online]. Available:
https://cordis.europa.eu/project/rcn/105117_es.html. [Accessed November 2018].

[4] B. D. Martino, “Semantic Techniques for Multi-cloud Applications Protability and
Interoperability”.

[5] T.-F. Fortiş and N. Ferry, “Cloud Patterns,” in Model-Driven Development and Operation of Multi-
Cloud Applications: The MODAClouds Approach, Springer International Publishing, 2017, pp. 107-
-112.

[6] P. Jamshidi, C. Pahl, S. Chinenyeze and X. Liu, “Cloud Migration Patterns: A Multi-Cloud
Architectural Perspective,” 10th International Workshop on Engineering Service-Oriented
Applications, 11 2014.

[7] Arcitura Education Inc., “CloudPatterns.org,” [Online]. Available:
http://www.cloudpatterns.org/. [Accessed 2018].

[8] “AWS Cloud Design Patterns,” [Online]. Available: http://en.clouddesignpattern.org. [Accessed
September 2017].

[9] “Microsoft Azure Cloud Design Patterns,” [Online]. Available: https://docs.microsoft.com/en-
us/azure/architecture/patterns/.

[10] F. Leymann, C. Fehling, S. Wagner and J. Wettinger, “Native Cloud Applications: Why Virtual
Machines, Images and Containers Miss The Point!,” in Proceedings of the 6th International
Conference on Cloud Computing and Service Science (CLOSER 2016), SciTePress, 2016, pp. 7-15.

[11] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National Institute of Standards
and Technology, Gaithersburg, MD, 2011.

[12] A. E. Inc, “SOA Patterns,” [Online]. Available:
http://soapatterns.org/design_patterns/containerization. [Accessed 09 10 2017].

[13] C. Richardson, “Microservices.io,” [Online]. Available:
http://microservices.io/patterns/deployment/service-per-container.html. [Accessed 10 10
2017].

[14] M. Fowler and J. Lewis, “Microservices, a definition of this new term.,” 25 3 2014. [Online].
Available: https://martinfowler.com/articles/microservices.html. [Accessed 01 10 2017].

[15] C. de la Torre, “Microservices and Docker containers: Architecture, Patterns and Development
guidance,” 2 08 2017. [Online]. Available:

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 40 of 59

www.decide-h2020.eu

https://blogs.msdn.microsoft.com/dotnet/2017/08/02/microservices-and-docker-containers-
architecture-patterns-and-development-guidance/. [Accessed 10 10 2017].

[16] R. Stoffers, “Containers and Containerization - Applications and Services on Steroids?,” Service
Tech Mag, pp. 3 --10, Q2 2016.

[17] “SockShop App,” [Online]. Available: https://microservices-demo.github.io/.

[18] U. Zdun y P. Avgeriou, «Modeling Architectural Patterns Using Architectural Primitives,» SIGPLAN
Not., vol. 40, pp. 133--146, 2005.

[19] U. Zdun, P. Avgeriou, C. Hentrich y S. Dustdar, «Architecting As Decision Making with Patterns
and Primitives,» de Proceedings of the 3rd International Workshop on Sharing and Reusing
Architectural Knowledge, Leipzig, 2008.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 41 of 59

www.decide-h2020.eu

Appendix A. NFR Properties and Pattern Language

Table 14 describes the properties and structure for the NFRs. This structure is used to describe the
qualitative and quantitative values for each NFR in the application description. It is also used as input
for the pattern inferring algorithm as well as the OPTIMUS module.

Table 14. NFR Language

NFR

Property Description Type Values

Type The type of the NFR Enum Availability
Cost
Location
Performance
Scalability

Availability

Property Description Type Values

AbstractValue The qualitative property of the
NFR

Enum Low
Medium
High

Value The availability as percentage Percent 0%-100%

Unit The availability unit String e.g. “Uptime”

Cost

Property Description Type Values

AbstractValue The qualitative property of the
NFR

Enum Low
Medium
High

Value The cost in currency unit and as
order of magnitude

Number 10^n

Unit The currency unit String e.g. “Euro”

Location

Property Description Type Values

AbstractValue The qualitative property of the
NFR

Enum Single Location
Single Country
Cross Border

Value The list of locations ArrayOf(String) e.g. [“France”,”Berlin”]

Performance

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 42 of 59

www.decide-h2020.eu

Property Description Type Values

AbstractValue The qualitative property of the
NFR

Enum Low
Medium
High

Value The response time in unit
measurement

Number e.g. 13.3

Unit The unit of performance
measurement

String e.g. “ms”

Scalability

Property Description Type Values

AbstractValue The qualitative property of the
NFR

Enum Low
Medium
High

Value The scalability in unit of
measurement and as order of
magnitude

Number 10^n

Unit The unit of scalability
measurement

String e.g. “requests/sec”

Table 15 lists the elements of the patterns language that will be used in the project to describe each
pattern. The elements are consolidated from two projects namely [2] and [3]. The language is also
reflected in the compendium component for inferring patterns based on NFRs.

Table 15. Pattern Language

Element Name Description

Pattern name The name of the pattern

Logo A logo to identify the pattern (if available)

Type of pattern Optimization, Development or Deployment

Application context When can the pattern be applied? Any constraints on the application?

Problem What is the problem addressed?

Solution How is the problem addressed?

Architectural
mapping

Which component is addressed by the pattern? Application, storage,
resource management

Architectural model The pattern description in UML if applicable

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 43 of 59

www.decide-h2020.eu

Element Name Description

Architectural model
image

The UML model as an image

Impact on NFRs Which NFRs are affected in this context?

Abstraction level In which abstraction level is the pattern materialized? Among architecture
level, application level and provider-specific type.

Related patterns Which patterns are related to the described one? As it is compiled in the
different catalogues we have studied

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 44 of 59

www.decide-h2020.eu

Appendix B. ARCHITECT Software Documentation

The following sections present the document related to the delivery and usage of the different
elements comprising DECIDE ARCHITECT.

Appendix B.1 Delivery and Usage: The Eclipse Plugin

The Plugin consists of three Packages: the Update Site, the feature and the plugin Package. The first
two have the standard Eclipse structure. The Plugin Package contains the actual implementation and
consists of five sub packages:

• eu.DECIDEh2020.architect.plugin.natures
contains the class ProjectNature which defines the projects Eclipse nature.

• eu.DECIDEh2020.architect.plugin.perspectives
contains the class Perspective, defining the projects eclipse perspective.

• eu.DECIDEh2020.architect.plugin.descriptorWizard

contains the Eclipse Wizard used to create a new DECIDE project.

• eu.DECIDEh2020.architect.plugin.editor
contains the MultiPageEditor

• eu.DECIDEh2020.architect.plugin.layoutComponents
consists of SWT Composites used by the wizard and the editor.

The Plugin uses two libraries developed for ARCHITECT: The Application Manager and the Cloud
Patterns Library. The Application Manager manages the state of the Application Descriptor on disc and
in the Git repository and its representation. It therefore consists of the model, a class that handles the
serialization and deserialization to and from JSON and a class that controls the communication and
handling of remote and local Git repositories. The Cloud Patterns Library is providing the pattern and
NFR data.

Appendix B.1.1 Building from Source

The source code is provided via a zip file and a Git repository. For each source, a different preparation
process is needed to import the project into Eclipse before building the plugin:

Via ZIP file

A special zip distribution is available in repository:

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT

When building the project from the zip file, the jar files from the Apache Jena project have to be
extracted from http://archive.apache.org/dist/jena/binaries/apache-jena-3.4.0.zip and saved to the
folder plugin/libs/jena/lib/. After doing this, the project can be imported to Eclipse with the import
option General > “Projects from Folder or Archive”.

From the Git repository

The source code is currently hosted in the following Gitlab repository:

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT

When building the project from the downloaded zip file, the jar files from the Apache Jena project
have to be extracted from http://archive.apache.org/dist/jena/binaries/apache-jena-3.4.0.zip and

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT
http://archive.apache.org/dist/jena/binaries/apache-jena-3.4.0.zip
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT
http://archive.apache.org/dist/jena/binaries/apache-jena-3.4.0.zip

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 45 of 59

www.decide-h2020.eu

saved to the folder plugin/libs/jena/lib/. After doing this, the project can be imported to Eclipse with
the import option General > “Projects from Folder or Archive”.

Building with Maven

The plugin can be built with Maven via the goal clean install. This will create the update Site in
site/target/repository. The path to this folder can be used to install the plugin.

Appendix B.1.2 Installing the Plugin

Via an update file:

To register the update site with Eclipse, perform the following steps after unpacking the zip file:

• Select "Help -> Install New Software..." from the main menu to launch the "Install" wizard

• Click "Add..."

• Click "Local...", browse to the installation Folder in the dialog. Click "OK" to add the site

• Note that the "Install" wizard changes to display the contents of the added site

Via the Update URL

To register the update site with Eclipse, perform the following steps:

• Select "Help -> Install New Software..." from the main menu to launch the "Install" wizard

• Click "Add..."

• Enter the URL of the installation site. Click "OK" to add the site

• Note that the "Install" wizard changes to display the contents of the added site

Appendix B.1.3 User Manual

This Plug-in will create a new project type, a DECIDE project, with which the user will be able to create
the DECIDE Application file via a GUI and synchronize it with a git repository. After creating this DECIDE
project the user will have access to a GUI via which the DECIDE Application file can be modified. This
GUI can also recommend relevant Design Patterns to the user.

The Wizard

There are three ways to create a DECIDE project in eclipse: The user can create a new DECIDE project
from scratch, open an existing project or clone an existing project from a git repository. All these things
can be accomplished via the new project dialog in Eclipse. It is also possible to convert an existing
Eclipse project to a DECIDE project by adding the DECIDE nature to this project.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 46 of 59

www.decide-h2020.eu

Figure 5. Create Project Wizard

When cloning from a Git repository, the user only has to input the Git URI and credentials in addition
to the Project name and path and the repository will be downloaded and opened. In this case, this is
also the last and only page of this wizard. If the repository is local, either new or existing, only the path
to the repository is needed to open/create the project.

After deciding the location of the repository, the user can set a short text describing the application on
the next page of the Wizard. On this page, the user can also set the number of Microservices that are
known to be in the Application at the moment.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 47 of 59

www.decide-h2020.eu

Figure 6. Wizard Add Microservices

The third and last page of the wizard is optional. On this page, the user can see a detailed view of each
microservice and can set a name and other properties.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 48 of 59

www.decide-h2020.eu

Figure 7. Wizard define Microservices

The Editor

After completing the wizard, the project containing the DECIDE.json will be created and the user will
be prompted to open the DECIDE perspective, if it is not already open. In the editor view a Multi-Page
editor with three pages will be opened: the first Page, titled “DECIDE.json” shows the raw JSON file;
the second page contains a graphical project overview where most information contained in the
Application description concerning Architect can be changed via this GUI, e.g. adding tags to
microservices to link them to NFRs. The second page is labeled “NFR Editor” since here one can add,
remove and edit all NFRs. NFRs can be linked to either one or more microservices or to the application
as a whole via tags. Finally, the third page is called “Patterns” and presents the user with the required
patterns inferred from the specified NFRs.

The developer has to commit the changes they made either via the Eclipse Git tool or an external Git
tool of their choice.

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 49 of 59

www.decide-h2020.eu

Figure 8. Application Description Editor

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 50 of 59

www.decide-h2020.eu

Figure 9. NFR Editor

Figure 10. Inferred Patterns

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 51 of 59

www.decide-h2020.eu

Appendix B.2 Delivery and Usage: The Cloud Patterns

The Patterns Compendium is implemented in Java and packaged and provided as .jar library. The
library contains a model of patterns defined as ontology. The patterns, NFRs and their dependencies
are described in RDF format.

The Ontology “DECIDE Patterns Vocabulary”

DECIDE defines its own pattern ontology. The ontology uses the following namespace:

<http://decideh2020.eu/ns/patterns/>

In the first release, it defines two main classes and a few properties (we use ‘dp:’ for the namespace)
in order to capture each aspect from the viewpoint of DECIDE:

Class NFR

dp:NFR

 a rdfs:Class ;

 rdfs:label "Non Functional Requirement"@en ;

 rdfs:comment "A non-functional requirement."@en ;

 rdfs:subClassOf rdfs:Resource ;

 rdfs:isDefinedBy dp: .

Class Pattern

dp:Pattern

 a rdfs:Class ;

 rdfs:label "Pattern"@en ;

 rdfs:comment "A pattern is a reusable solution for a common problem."@en ;

 rdfs:subClassOf rdfs:Resource ;

 rdfs:isDefinedBy dp: .

Property context

dp:context

 a rdf:Property ;

 rdfs:label "context"@en ;

 rdfs:comment "Describes the context of the pattern's problem."@en ;

 rdfs:domain dp:Pattern ;

 rdfs:range rdf:langString ;

 rdfs:isDefinedBy dp: .

Property solution

dp:solution

 a rdf:Property ;

 rdfs:label "solution"@en ;

 rdfs:comment "Describes the solution of the pattern's problem."@en ;

 rdfs:domain dp:Pattern ;

 rdfs:range rdf:langString ;

 rdfs:isDefinedBy dp: .

Property hasImpactOn

dp:hasImpactOn

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 52 of 59

www.decide-h2020.eu

 a rdf:Property ;

 rdfs:label "Has impact"@en ;

 rdfs:comment "The subject has an impact on the object."@en ;

 rdfs:domain rdfs:Class ;

 rdfs:range rdfs:Resource ;

 rdfs:isDefinedBy dp: .

Property provides

dp:provides

 a rdf:Property ;

 rdfs:subPropertyOf dp:hasImpactOn ;

 rdfs:label "Provides"@en ;

 rdfs:comment "The subject provides to the object."@en ;

 rdfs:domain rdfs:Class ;

 rdfs:range rdfs:Resource ;

 rdfs:isDefinedBy dp: .

Property requires

dp:requires

 a rdf:Property ;

 rdfs:subPropertyOf dp:hasImpactOn ;

 rdfs:label "Requires"@en ;

 rdfs:comment "The subject requires from the object."@en ;

 rdfs:domain rdfs:Class ;

 rdfs:range rdfs:Resource ;

 rdfs:isDefinedBy dp: .

In addition, also a SKOS concept theme for the NFR categories are defined:

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

<http://decideh2020.eu/resources/patterncategories>

 a skos:ConceptScheme ;

 rdfs:label "Cloud Pattern Categories"@en .

<http://decideh2020.eu/resources/patterncategories/fundamental>

 a skos:Concept ;

 skos:inScheme <http://decideh2020.eu/resources/patterncategories> ;

 skos:prefLabel "Fundamental Pattern"@en .

<http://decideh2020.eu/resources/patterncategories/development>

 a skos:Concept ;

 skos:inScheme <http://decideh2020.eu/resources/patterncategories> ;

 skos:prefLabel "Development Pattern"@en .

<http://decideh2020.eu/resources/patterncategories/optimization>

 a skos:Concept ;

 skos:inScheme <http://decideh2020.eu/resources/patterncategories> ;

 skos:prefLabel "Optimization Pattern"@en .

<http://decideh2020.eu/resources/patterncategories/deployment>

 a skos:Concept ;

 skos:inScheme <http://decideh2020.eu/resources/patterncategories> ;

 skos:prefLabel "Deployment Pattern"@en .

Describe Patterns Semantically

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 53 of 59

www.decide-h2020.eu

Using the concepts from 5.4.1, together with a few other common vocabularies, we are able to
describe our patterns semantically in relation to non-functional requirements. Currently we are limited
to only define the abstract pre-defined relation “has impact on”, maybe slightly more concrete as “has
negative impact on” or “has positive impact on”. The following shows a complete pattern definition in
RDF:

<stateless-component>

 a dp:Pattern ;

 dct:title "Stateless Component"@en ;

 dct:type <http://decideh2020.eu/resources/patterncategories/development> ;

 dp:icon <urn:stateless_component.png> ;

 dct:subject "How can elasticity and robustness of an application component be

increased?"@en ;

 dct:description "State is handled external of application components to ease

their scaling-out and to make the application more tolerant to component

failures."@en ;

 dp:context "The components of a Distributed Application are deployed among

multiple cloud resources to benefit from this distributed runtime environment

through scaling out.The most significant factor complicating addition and removal

of component instances in this scope is the internal state maintained by them. In

case of failure, this information may even be lost."@en ;

 dp:solution "Application components are implemented in a fashion that they do

not have an internal state. Instead, their state and configuration is stored

externally in Storage Offerings or provided to the component with each request."@en

;

 dct:license <https://creativecommons.org/licenses/by/4.0/> ;

 foaf:page [

 a foaf:Document ;

 foaf:topic "Stateless Component Pattern" ;

 foaf:primaryTopic

<http://www.cloudcomputingpatterns.org/stateless_component/> ;

] ;

 dct:relation <relational-database> ;

 dct:relation <key-value-storage> ;

 dct:relation <blob-storage> ;

 dct:relation <message-oriented-middleware> ;

 dp:provides <scalability> .

This allows us to simply ask for all patterns that have a positive impact on scalability. In future releases,
the full power of the semantic description approach will enhance the query and analytical capabilities
for a much better selection of applicable patterns.

Appendix B.2.1 Building from Source

The project is available via Git repository. Download the source code from
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT. The
component relevant for this is named CloudPatterns.

The project uses Maven as build tool. So, the only thing to do is to call

$> mvn clean package

in order to build the jar. You will find the jar in the target directory.

Appendix B.2.2 Installation and Usage

For non-Maven based projects you can take the build jar file located in the target directory after the
build command and put it in the classpath of your application.

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 54 of 59

www.decide-h2020.eu

For Maven based projects you need to install it in a Maven repository which your application can
access. E.g. to put it in your local maven repository, you can simply call

$> mvn install

Finally, your application pom.xml requires the following dependency:

<dependency>

 <groupId>de.decideh2020</groupId>

 <artifactId>cloudpatterns</artifactId>

 <version>1.0-SNAPSHOT</version>

</dependency>

src/main/test
contains examples in the class PatternsTest for how to use the library.

src/main/resources/patterns
contains the DECIDE pattern ontology and the turtle-based RDF pattern descriptions.

Appendix B.3 Delivery and Usage: The Cloud Patterns Microservice

The project CloudPatternsCompendium wraps the CloudPatterns library and allowing the library to be
deployed as Microservice, offering a convenient REST interface. Patterns and NFRs are exported in
JSON format for now. Later releases will support RDF based formats and a SPARQL endpoint as well if
necessary.

Appendix B.3.1 Building from Source

The project is available via Git repository. Download the source code from
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT.

The component name relevant for this trial is called CloudPatternsCompendium.

The project uses Maven as build tool. So, the ony thing to do is to call

$> mvn clean package

The packaged jar file can be found in the target directory. To start the Microservice type

$> java -jar target/cloudpatternscompendium-<version>-fat.jar

Appendix B.3.2 Building and Using a Docker Image

You can build and run a Docker image of the microservice:

$ docker build -t decide/cloudpatternscompendium

$ docker run -t -i -p 8080:8080 decide/cloudpatternscompendium

Appendix B.3.3 Usage

The microservice can be accessed under the following URL:

http://localhost:8080/

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT
http://localhost:8080/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 55 of 59

www.decide-h2020.eu

The OpenAPI 3 specification of the API. The root URL shows a documentation of this specification.
There you will find any details about the API.

http://localhost:8080/health

Shows health status of the microservice

http://localhost:8080/metrics
Gives metric information about the API usage. This requires to start the Microservice with
-Dvertx.metrics.options.enabled=true

Appendix B.4 Delivery and Usage: The AppManager

The AppManager manages the state of the Application Description on disc (local repository) and in the
git repository and its representation. It presents an interface to Applications that want to work with
the Application Description that is it helps with converting the JSON file into a Java class and back and
also helps with the git repository of the app descriptor.

Appendix B.4.1 Building from Source

The project is available via Git repository. Download the source code from

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT.

The Patterns Compendium is used as a dependency which means that the usage instructions of the
relevant module need to be followed before building the AppManager.

The project uses Maven as build tool. So, the only thing to do is to call:

$> mvn clean package

in order to build the jar. You will find the jar in the target directory.

Appendix B.4.2 Installation and Usage

For non-Maven based projects you can take the build jar file located in the target directory after the
build command and put it in the classpath of your application.

For Maven based projects you need to install it in a Maven repository which your application can
access. E.g. to put it in your local maven repository, you can simply call

$> mvn install

Finally, your application pom.xml requires the following dependency:

<dependency>

 <groupId>de.decideh2020</groupId>

 <artifactId> appManager</artifactId>

 <version>1.0-SNAPSHOT</version>

</dependency>

src\eu\DECIDEh2020\architect\appManager\models
contains the App Descriptor models.

http://www.decide-h2020.eu/
http://localhost:8080/health
http://localhost:8080/metrics
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/ARCHITECT

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 56 of 59

www.decide-h2020.eu

src\eu\DECIDEh2020\architect\appManager\persistence
contains the helper classes for handling the json file and git repository.

Appendix C. Sock Shop example app

This section investigates an exemplary application and showcases which multi-cloud patterns, as
presented in this deliverable, can be applied in order to render it multi-cloud aware.

Again, multi-cloud aware in the context of DECIDE implies that the application is distributed over
different CSPs and can be seamlessly re-deployed, i.e. ported across multiple heterogeneous CSPs.

The selected application, the Sock Shop App [17], is a loosely coupled microservices demo application.
It simulates the user-facing part of an e-commerce website that sells socks. It is available as open
source software and has been developed with the intention to aid in demonstrating and testing
microservices and cloud native technologies.

Appendix C.1 Architecture

The Sock Shop app is designed to provide as many microservices as possible. The microservices are
defined by functionality required in an e-commerce site and are loosely coupled. Sock Shop
microservices are designed to have minimal expectations, using DNS to find other services. The
Application uses a message broker for sending messages using queues.

All services communicate using REST over HTTP. Furthermore, the Sock Shop app is polyglot being built
using Spring Boot5, Go kit6 and Node.js7 and is packaged in Docker8 containers.

Figure 11. Architecture of SockShop App [17]

5 Spring Boot: http://projects.spring.io/spring-boot/
6 Go kit: http://gokit.io/
7 Node.js: https://nodejs.org/
8 Docker: https://docker.io

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 57 of 59

www.decide-h2020.eu

Appendix C.2 Non-functional Requirements

For the Sock Shop App, we define the following NFRs based on hypothetical assumptions in the context
of an e-commerce application and prioritize them as follows:

• Scalability – Hypothetically, we may assume that market research and data analytics show that
the user base is active during morning hours and after 8 PM otherwise we have unpredictable
workloads.

• Performance – the performance of the application is important as the users expect rendering
of the website and the transactions speed to be at most 2 seconds response time.

• Availability – To maintain a good reputation the service has to be available at 99% or at all
times

• Cost – As the Sock Shop is a start-up, keeping costs to a minimum is vital.

Appendix C.3 Candidate DECIDE Patterns

As noted previously in section 0 patterns provide solutions or best practices for commonly occurring
problems [2] with a pattern based approach we can additionally simplify and guide developers in the
use of the DECIDE DevOps framework.

This section introduces a selection of patterns that address the NFRs as well as the use of the DECIDE
DevOps Framework.

Appendix C.3.1 DECIDE Fundamental Patterns

The Sock Shop app fulfils evidently a number of patterns that are fundamental for the use of the
DECIDE Framework. These are:

• Distributed Application - The Sock Shop app consists of microservices. This allows the
application to be deployed in a distributed manner.

• Loose Coupling - The microservices communicate via REST over HTTP.

• Three-Tier Cloud Application - Front-end, Business Logic (Order, Shipping, Payment),
Persistence (Order, User, Catalogue, Cart)

• Containerization - The Sock Shop app is developed as container based architecture.

With these patterns the ground work for the properties: Scalability, Performance, Cost and
Availability can start to be addressed. Furthermore, the patterns facilitate the use of the DECIDE
DevOps Framework.

Other fundamental patterns that still need to be applied are:

• Managed Configuration – Deployment and configuration scripts have to be stored in a central
area external to the built files.

• Service Registry - The Sock Shop app uses DNS to discover services. This is an outdated way of
doing things, as DNS propagation is slow. Using DNS tables is probably problematic in a multi-
cloud scenario, because of deployment and access issues. Furthermore, given the fact that
many instances will be spawned or scaled out and there is probably a number of
communications taking place between the different microservices, this needs to be handled
by a service. Therefore, we propose the service registry pattern, with which a type of database
or table holds the current location of the services, their instances and locations. Registration

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 58 of 59

www.decide-h2020.eu

and de-registration of the service instances takes place during start-up and shutdown,
respectively.

Appendix C.3.2 DECIDE Optimization Patterns

The Sock Shop app fulfils a number of optimization patterns that are part of the DECIDE Multi-Cloud
pattern catalogue. These are:

• Elastic Load Balancer – As workloads are unpredictable at certain times (during the day) it is
vital to scale out automatically depending on the current experienced workload. The
components resulting in being scaled out by an elastic load balancer are Front-End, Order,
Payment, User, Catalogue and Cart.

• Elastic Queue – since the Sock Shop app uses message queues in its architecture and scalability
is an important NFR, an Elastic Queue should be employed to manage the number of instances
(Shipping and QueueMaster) depending on the number requests to be queued.

Appendix C.3.3 DECIDE Development Patterns

The Sock Shop app fulfils a number of development patterns that are part of the DECIDE Multi-Cloud
pattern catalogue. These are:

• Data Access Component – The microservices, which access a data base are themselves
implemented in a way that isolates complexity of data, enable additional data consistency, and
ensure adjustability of handled data elements to meet different customer requirements.

• User Interface Component – The front-end microservice is decoupled from the rest of the
application (i.e. microservices) and loosely coupled. The front-end is therefore, exchangeable
and customisable. Furthermore, it can be scaled out independently if need be.

• Processing Component – The Sock Shop app’s microservices can be scaled out independently,
as separation of concerns has been considered here at the design time of the application.

Other development patterns that still need to be applied are:

• Compliant Data Replication – This pattern becomes useful if the SockShop App becomes
available internationally and certain countries do not allow storing specific data, e.g. a certain
subset of user’s personal data cannot be stored in country x. If location is important, this
pattern should be regarded.

Appendix C.3.4 DECIDE Deployment Patterns

Hybrid * - The patterns involving hybrid cloud, such as hybrid user interface, hybrid processing, hybrid
data, hybrid backup, hybrid backend, and hybrid application functions all involve using multiple hosting
environments that best suit the requirements and needs of the application. This is relevant in a multi-
cloud strategy and can drastically reduce cost if, for instance, certain microservices do not require
elasticity they can be hosted on a private cloud that does not feature these capabilities. Also sharing
IT-resources between different tenants can drastically reduce costs.

Appendix C.4 Resulting Architecture

Figure 12 depicts the architecture for the Sock Shop app after the recommended patterns have been
applied. As one can see, an independent Configuration Manager component has been introduced to

http://www.decide-h2020.eu/

D3.2 – Intermediate architectural patterns for implementation,
deployment and optimization Version 1.0. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 59 of 59

www.decide-h2020.eu

allow for dynamic configuration of the microservices as well as to allow other automated deployment
and provisioning tools to access the configuration information needed for their tasks.

Furthermore, a Service Registry has been introduced in order to facilitate the discovery of the location
of the microservices that have been newly instantiated by the Elastic Load Balancer. And lastly an
Elastic Queue manages the number of needed Queue Masters depending on the number of the
messages received by the Rabbit MQ.

Elastic
LoadBalancer

CartCartCart

Mongo

Java

CartCart
Catalog

ue

MySQL

Go

CartCartUser

Mongo

Go

CartCart
Payme

nt

Go

CartCartOrder

Mongo

Java / .Net Core

Configuration
Manager

Shipping Queue Queue-
Master

Queue-
Master

Elastic
Queue

Service
Registry

Java
RabbitMQ Java

Deployment /
Provisioning

Tools

Figure 12. SockShop App Updated Architecture

http://www.decide-h2020.eu/

