
D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 1 of 28

www.decide-h2020.eu

Deliverable D3.8

Intermediate DECIDE OPTIMUS

Editor(s): María José López

Responsible Partner: TECNALIA

Status-Version: Final – 1.0

Date: 28/11/2018

Distribution level (CO, PU): CO

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 2 of 28

www.decide-h2020.eu

Project Number: GA 726755

Project Title: DECIDE

Title of Deliverable: D3.8 Intermediate DECIDE OPTIMUS

Due Date of Delivery to the EC: 30/11/2018

Workpackage responsible for the
Deliverable:

WP3 – Continuous Architecting

Editor(s): TECNALIA

Contributor(s): TECNALIA

Reviewer(s): Javier Gavilanes (EXPERIS)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5

Abstract: This software deliverable comprises the intermediate
OPTIMUS simulation engine. This deliverable is the
result of T3.2 and T3.3. The software will be
accompanied by a Technical Specification Report

Keyword List: Simulation, classification, Eclipse IDE, plugin, java

Licensing information: This program and the accompanying materials are
made available under the terms of the Eclipse Public
License 2.0 which is available at
https://www.eclipse.org/legal/epl-2.0/

The document itself is delivered as a description for
the European Commission about the released
software, so it is not public.

Disclaimer This deliverable reflects only the author’s views and
views and the Commission is not responsible for any

use that may be made of the information contained
therein

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 3 of 28

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 20/11/2018 First internal Draft version TECNALIA

v0.2 21/11/2018 Version ready for internal review TECNALIA

V0.3 28/11/2018 Implemented the changes suggested by
the reviewer

TECNALIA

v.10 30/11/2018 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 4 of 28

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 4

List of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 Implementation ... 9

2.1 Functional description ... 9

2.1.1 Fitting into overall DECIDE Architecture ... 12

2.2 Technical description ... 13

2.2.1 Prototype architecture .. 13

2.2.2 Components description ... 14

2.2.3 Technical specifications ... 15

3 Delivery and usage .. 17

3.1 Package information ... 17

3.2 Installation instructions ... 19

3.3 User Manual .. 20

3.4 Licensing information .. 25

3.5 Download .. 26

4 Conclusions .. 27

References ... 28

List of Figures

FIGURE 1. OPTIMUS IN DECIDE ARCHITECTURE. .. 12
FIGURE 2. OPTIMUS INTERFACES WITHIN DECIDE FRAMEWORK ... 12
FIGURE 3. OPTIMUS HIGH LEVEL ARCHITECTURE ... 13
FIGURE 4. OPTIMUS COMPONENT DIAGRAM .. 14
FIGURE 5. GENERATED JAVA CLASSES BY SWAGGER. .. 16
FIGURE 6. ECLIPSE SOURCE FOLDER STRUCTURE OF OPTIMUS PLUGIN COMPONENT. ... 17
FIGURE 7. ECLIPSE SOURCE FOLDER STRUCTURE OF OPTIMUS SERVER COMPONENT. ... 18
FIGURE 8. CREATION OF A NEW FILE. ... 20
FIGURE 9. SELECTION OF THE DECIDE EDITOR FILE. .. 20
FIGURE 10. SELECTION OF THE DECIDE JSON FILE’S INFORMATION. ... 21
FIGURE 11. INITIAL NEW FILE. .. 21
FIGURE 12. CLASSIFICATION TAB. ... 22
FIGURE 13. SIMULATION TAB. .. 22

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 5 of 28

www.decide-h2020.eu

FIGURE 14. CLASSIFICATION TAB FOR SOCKSHOP APPLICATION EXAMPLE. ... 23
FIGURE 15. SIMULATION LAUNCHED. .. 24
FIGURE 16. DEPLOYMENT SCHEMA. .. 24

List of Tables

TABLE 1. REQUIREMENTS COVERED BY THE M24 PROTOTYPE. ... 10

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 6 of 28

www.decide-h2020.eu

Terms and abbreviations

ACSmI Advanced Cloud Service meta-Intermediator

CS Cloud Service

DB Database

EC European Commission

UI User Interface

JSON JavaScript Object Notation

MCSLA Multi Cloud Service Level Agreement

NFR Non-Functional Requirements

VH Violation Handler

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 7 of 28

www.decide-h2020.eu

Executive Summary

This document contains the technical description of the DECIDE OPTIMUS tool in its intermediate
version. The DECIDE OPTIMUS M24 prototype provides the developer with the best possible
theoretical deployment for his or her multi-cloud application based on the classification of the
microservices that compose the application, the Non-Functional Requirements involved, and the cloud
services handled by ACSmI (Discovery). The application classification is the first step of the OPTIMUS
process [1].

Moreover, the document includes sections about how to install, and use DECIDE OPTIMUS, and the
license under it is published.

The details about the functionality and the technical aspects are described in the corresponding
sections as well as the manual and the instructions to run the software.

The general architecture and design of DECIDE OPTIMUS tool is described in this document due to the
fact that there is no specific document for it. So, the evolution and the requirements fulfilled in each
prototype can be found in the corresponding version of the deliverable. The general requirements and
the functionalities can be consulted in the initial version of the document [2].

Next version of this document is the final one and will present the final status of the DECIDE OPTIMUS
tool, the features that the DECIDE OPTIMUS tool will provide to the developer and the technical
characteristics associated to it. This version is planned for being ready in the month 30.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 8 of 28

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

This document presents the functionalities, design and development of the DECIDE OPTIMUS tool in
its intermediate version, as a prototype. The content is the corresponding one to the current version
of prototype planned for month 24.

1.2 Document structure

The global architecture and the functionalities covered by this M24 prototype, as well as all the
instructions for installing the software and using it, are described in this deliverable.

This document is composed of four (4) main sections:

1. General introduction about the content and structure of the document.
2. The implementation of the DECIDE OPTIMUS, including the eclipse plugin and the REST

service generated with Swagger [3]. The requirements that the two parts cover, the
architecture and the description of its main components. Also, the technical development
aspects and how OPTIMUS fits in the global DECIDE architecture are included.

3. The delivery and usage section, about how to install it, how to use it and any licensing
information to run the prototype.

4. Conclusions and future work

.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 9 of 28

www.decide-h2020.eu

2 Implementation

2.1 Functional description

DECIDE OPTIMUS will provide the best possible application deployment schemas, based on the non-
functional requirements set by the developer and the requirements of the multi-cloud application,
automating the provisioning and selection of cloud services offering for multi-cloud applications.

The DECIDE OPTIMUS tool consists of two separate parts, the first one covers the classification process
through a local eclipse plugin installation and the second one can be invoked by that plugin or by the
DECIDE Framework as it is a REST [4] service by which the simulation process can be launched.

Functionalities:

The main functionalities of the DECIDE OPTIMUS covered in this M24 prototype are:

1. Multi-cloud application classification. This functionality consists in associating the
components (microservices) that form the multi-cloud application to a group of Cloud Services
where they could be deployed through a classification type.

For this purpose, the profiling of the microservices of the multi-cloud applications is a way to
match the characteristics of those microservices with the group of Cloud Services features
where they will be deployed.

This classification will be based on the information provided by the developer and the
information handled by “Types management” subcomponent.

This functionality is partially covered considering that the final information requested to the
developer will increase as the simulation process becomes more complex.

The current prototype presents the UI for introducing details about the application and the
microservices, such as the name of the multi-cloud application, the name of each microservice
that it is composed of, if it has a detachable resource, if this resource access to a DB or not,
and some characteristics of the microservice. The classification associated is presented in a
combo with the value of it, allowing to the developer to change this value.

2. Theoretical deployment generation. When the classification is made, and the NFRs informed
by the developer, OPTIMUS prepares a request to invoke ACSmI Discovery and obtains the
cloud services that fulfil the requirements of the microservices for their deployment.

This request is composed of generic Cloud Services and the list of resources that the
microservices need. At that moment of the project, the only Cloud Service class that is going
to be handled is the Virtual Machine. This functionality requires interacting with the ACSmI API
to obtain the list of Cloud Services that meet the criteria requested.

The request to ACSmI discovery is built and performed based on the classification of the
microservice, the characteristics associated to it and the NFRs for the application level. The
aggregate and disaggregate values needed for calculating the level of fulfilment of the NFRs
will be defined for the next version and implemented as part of the simulation algorithm.

Moreover, when the information about patterns handled by ARCHITECT tool is defined, this
will be part also of that algorithm, considering the impact that the pattern can have over the
deployment schema.

Therefore, this functionality is partially covered in this M24 prototype.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 10 of 28

www.decide-h2020.eu

3. Simulation. The combination of the different possibilities of deployment, considering the
theoretical and individual deployment possibilities for each microservice and the list of cloud
services (from ACSmI Discovery) that suit them, will be ranked to select the best of them. For
the M30 final version of the tool, five schemas will be presented to the developer to confirm
the first of them or to select another one of that list of five. This M24 prototype shows only
one schema and it assumes that the developer agrees if he does not perform another
simulation changing some of the characteristics.

The Schema includes information about the id of the cloud service in the ACSmI registry and
the ids of the microservices that are set to deployed on it. This information, as well as a date
to identify when this schema was obtained, is stored into the historical repository managed by
the App Controller.

The functionality is partially covered for M24 prototype. The REST service has been
implemented and the simulation can be performed.

The Eclipse plugin launches the simulation process for the current application and the result
with the best deployment schemas is shown to the developer, who can store it in the
application description, and therefore in the schemas history, or launch again the simulation
changing some data about the application.

It is the responsibility of the developer to upload the application description JSON file to the
repository where it belongs, before and after launching the simulation. For that, the eclipse
framework where the application description JSON file has been created or cloned, allows to
commit the file once the information needed for the simulation is completed. If the developer
needs to use another DECIDE tool inside the DevOps framework, he should upload again the
JSON file.

It has been implemented the interface with the Violation Handler tool which allows launching
a simulation through the DevOps Framework

Requirements:

The requirements covered by the M24 OPTIMUS prototype are described in the Table 1.

The three first rows are related to the classification process, performed by the Eclipse plugin part of
OPTIMUS, the rest of them are about the simulation process.

Table 1. Requirements covered by the M24 prototype.

Req. ID Description Requirement coverage by the prototype

WP3-PROFI-REQ1 Load/read information about the
application (components).

Implemented.

The prototype reads the information
stored in the application description about
the microservices and the NFRs.

WP3-PROFI-REQ2 Classify the application, based on
the "stereotypes of the
components" that we defined in
the design phase of the profiling
tool, and compare it with the
information about the
(component) application.

The status covers the classification
considering the information about the
microservices the tool knows.

This requirement is partially covered, and
it is planned to be finished in M30 release.
The development was planned to be

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 11 of 28

www.decide-h2020.eu

Req. ID Description Requirement coverage by the prototype

incremental from the beginning of the
project.

WP3-PROFI-REQ3 Request the developer to confirm
the classification

Covered. This version considers there is a
confirmation when the developer saves
the result of the classification into the
application description JSON file.

WP3-OPTI-REQ3 OPTIMUS will analyse the
application's NFRs and the
classification (FR) in order to ask
ACSmI for information about cloud
services that cover the
requirements (F/NF) of the multi-
cloud application.

Implemented the creation of a filter to ask
ACSmI about the cloud services that fulfil
the requirements, considering the NFRs,
and the characteristics of the
microservices.

WP3-OPTI-REQ4 For each component of the multi
cloud application, OPTIMUS
engine builds the theoretical
composition of services needed to
the best possible deployment
topology

Covered partially due to its incremental
nature.

The current implementation is done
considering the information about the
NFRs and the classification. More input
data will require more implementation
and complexity.

WP3-OPTI-REQ5 Once OPTIMUS engine runs the
simulations for each component of
the multi cloud application, each
of them will be ranked

Covered partially due to its incremental
nature.

The current implementation covers a
simple ranking taking the best match of
each microservice for a cloud service and
combining with the rest of the
microservices. The combined schema
consists in selecting the best match
between a microservice and a cloud
service for all the microservices and then
group the microservices considering the
cloud service selected for deploying it.
More complexity in the selection and
combination processes will be performed
for the M30 prototype version.

WP3-OPTI-REQ7 OPTIMUS shall provide the
developer with the information
about the proposed deployment
schema (those with the highest
rank) for the application to cover
the required NFR and FR, and the
technological risk that each of
these configurations imply. This

This requirement changed because it is
not the scope of the best schemas to
inform about the technological risks
associated to its deployment.

The new redefined requirement is covered
partially because it is an incremental
requirement which is being continuously
improved as the input information can
change over time.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 12 of 28

www.decide-h2020.eu

Req. ID Description Requirement coverage by the prototype

will show in the UI and will require
confirmation from the developer

The information about the selected
schema is the schema itself, with the id of
the cloud service where a group of
microservices can be deployed, and the
ids if that group of microservices.

WP3-OPTI-REQ8 OPTIMUS tool can define new
schema from developer side
(proactively) and from results
coming from ADAPT (reactively) to
set up a new deployment schema,
if a malfunctioning of a deployed
multi-cloud application occurs

Implemented the possibility for launching
the simulation by the ADAPT Violation
Handler module.

The status is ready for integration tests

2.1.1 Fitting into overall DECIDE Architecture

OPTIMUS is the DECIDE tool that is responsible for obtaining the five best deployment schemas for the
multi cloud application. The global DECIDE architecture is shown in Figure 1. The role of OPTIMUS in
this global architecture has not changed compared to the previous version delivered in D3.7 [5].

Figure 1. OPTIMUS in DECIDE architecture.

The interaction with OPTIMUS and the rest of the DECIDE tools remains as planned and was described
in the previous deliverable [2].It is presented in the Figure 2.

Figure 2. OPTIMUS interfaces within DECIDE framework

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 13 of 28

www.decide-h2020.eu

These interactions are as follows:

• ARCHITECT: This is the starting point to the DECIDE framework when the developer wants to use
OPTIMUS tool. It provides a General Editor with which the information of the application will be
stored into the application description JSON file.

• ACSmI: The information about the cloud services where the microservices can be deployed on, is
provided by ACSmI Discovery.

• ADAPT: When a violation of the MCSLA is discovered, ADAPT Violation Handler triggers OPTIMUS
to obtain a new best deployment schema.

• Application Controller: The structure of the application description JSON file is defined by the
Application Controller component, as well as the operations that can be performed with it.
Moreover, the deployment schema obtained by OPTIMUS Simulation is managed also through the
Application Controller library when storing it into the historic repository and consulting it to avoid
a deployment under the same schema.

• NFR Editor: The NFR Editor is part of the General Editor in ARCHITECT. For each microservice the
developer can specify Non-Functional Requirements associated to it. OPTIMUS tool uses the
information about the NFRs to build the request to ACSMI Discovery and obtain the best schema
for the deployment.

2.2 Technical description

In this section, the technical aspects about the development of this version of the OPTIMUS prototype
are presented.

2.2.1 Prototype architecture

The general architecture planned for OPTIMUS tool is shown in Figure 3.

Figure 3. OPTIMUS High level architecture

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 14 of 28

www.decide-h2020.eu

This architecture has changed with respect to the one depicted in the previous deliverable.

The Types management and the Apps classification repo components have been included into the
other two sub-components of the “OPTIMUS Theoretical Deployment generation” component. This
was due to a technical decision, that concluded that these components do not have enough individual
entity.

M24 OPTIMUS prototype architecture consists of all the components of the general architecture,
although their implementation is not totally done.

2.2.2 Components description

The main components detailed in the OPTIMUS general architecture are represented in Figure 4.

Figure 4. OPTIMUS component diagram

Application classification

The Application Classification component is presented to the developer as a tab of the OPTIMUS
eclipse plugin. Through this UI the developer provides the information about the application and the
microservices which it is composed of, to classify each of those microservices.

The App Classification subcomponent will match the information stored about the different possible
classifications and the characteristics associated to each of the multi-cloud application microservices,
writing the corresponding value into the application description JSON file using the Application
controller library.

The classification process is explained more deeply in the DECIDE deliverable D3.5 Intermediate
profiling and classification techniques [1]

Theoretical deployment generation

Considering the classification of each microservice, OPTIMUS is capable of associating the cloud service
class that can be candidate for its deployment. Knowing the cloud services objectives, together with
the NFRs and some characteristics established by the developer, OPTIMUS builds a request to obtain
from ACSmI the cloud services that fit the requirements set in that request.

Processing the ACSmI answer, storing each possibility as a structured object of information, the
Theoretical Deployment preparation arranges all the input that the Simulation component needs.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 15 of 28

www.decide-h2020.eu

Simulation

The deployment possibilities group is a list of elements where are associated a cloud service and a
microservice with a specific weight that means the level of fulfilment of this association with the
requirements stablished by the developer for that microservice, including the NFRs. The combination
of that information consists of the creation of the different possibilities of grouping all the
microservices in a single deployment schema. The result of this combination will be a list of the possible
schemas considering each element of the schema in an individual way, that is, one cloud service and
one microservice and the weight associated.

With the individual associations as schemas, the next step is grouping the microservices that have the
same cloud service associated and calculate de weight for each of them.

Once the five best ranked schemas have been obtained, they will be presented to the developer to
confirm it, and then sent the selected one to the App controller.

In this M24 OPTIMUS prototype, they will be presented just the best of them.

This Simulation phase can be also triggered by DECIDE ADAPT Violations Handler (VH) and in this case
the schema is planned to be the best one and it will be stored automatically in the application
description JSON file.

2.2.3 Technical specifications

The DECIDE OPTIMUS M24 prototype has been developed as two separate parts, one in the form of
an Eclipse plugin with the structure of a multipage editor, and the other one as a REST service that
allows to be invoked from different parts of other tools or software elements. So, the tool must be
installed in an Eclipse framework for its use by the developer, and the REST service can be triggered
for the Violation Handler or launched by the DevOps framework if the project would have considered
to add this possibility.

Moreover, the plugin is executed together with the General Editor part of ARCHITECT. The
implementation has been made using the extensions mechanism that allows adding tabs from a plugin
to another previously launched.

The multipage editor consists of three tabs. The first of them is part of the General Editor and contains
the Application Description JSON file. It will reflect the information that the developer introduces using
the other tabs. The second tab is for the classification, where a group of microservices are shown if
they are in the application description JSON file. The third tab corresponds to the simulation process,
from where the simulation can be launched, and its result can be seen.

For developing the graphical object related to the OPTIMUS UI (multipage editor), the WindowBuilder
[6] Eclipse plugin has been used, which has been developed to create Java GUI applications by dragging
and dropping elements from a palette onto a design surface, in this case the tabs of the multipage
editor. The structure of the developed plugin has five (5) basic elements and each of them is a java
class element:

• Classification.java: it manages the appearance of the Classification tab and the processes
assigned to each element on it.

• MicroserviceClassification.java: it is the element that is responsible for creating the group of
objects to gather the information about one microservice. Each time the developer pushes the
"Add microservice" button, the same group of objects will be presented for him to fill them
with the corresponding information.

• SimulateSchema.java: it manages the Simulation tab. This OPTIMUS element will create this
tab and will include the results of the simulation, that is, the best schemas for the deployment.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 16 of 28

www.decide-h2020.eu

• ClassificationPageBuilder: This is the element that implements IPageBuilder and creates the
additional tab for the classification. It follows the rules for working with extensions.

• SimulationPageBuilder: This is the element that implements IPageBuilder and creates the
additional tab for the simulation. It follows the rules for working with extensions.

On the other hand, the REST Service has been created using the Swagger specification [3] for defining
the service and the format to manage it.

This specification is a JSON file from which Swagger generates the server with the REST service and the
template for the implementation of the service, and the client, which will be the library for using the
service from other modules or tools.

The template generated by Swagger for the server has been added to the Eclipse development
framework as a Maven [7] project, so, once the lines of code needed for providing the planned
functionality have been introduced, the server can be deployed in the integration framework for
testing it.

The main elements developed in this project are three (3) class elements described as follows:

• Bootstrap.java: This is the starting point when the REST service generated by Swagger is called.
It has been generated by Swagger and completed by TECNALIA.

• SimulatorThread: This class contains the intelligence to obtain the schema, performing the
request to ACSmI discovery and returning the best schema to the Eclipse plugin, or saving it
into the application description JSON file in case the VH has been the service caller.

• ApplicationApiServiceImpl: This file gathers the different methods related to the available REST
operations that the service publishes. It has been generated by Swagger and completed by
TECNALIA.

More java elements are generated by Swagger and are included in the Maven Eclipse project. They can
be seen in Figure 5.

Figure 5. Generated java classes by Swagger.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 17 of 28

www.decide-h2020.eu

3 Delivery and usage

3.1 Package information

The structure of the OPTIMUS plugin package in Eclipse is as follows:

Figure 6. Eclipse Source folder structure of OPTIMUS plugin component.

The package eu.DECIDEh2020.optimus.editors contains the source code for the OPTIMUS plugin.

The server with the corresponding code for the REST service is a separate Maven project and has the
following structure:

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 18 of 28

www.decide-h2020.eu

Figure 7. Eclipse Source folder structure of OPTIMUS server component.

The different packages depicted above contain the following elements:

• (main) eu.decideh2020.optimus.server.api: Where the main elements of the server
implementation are placed, the starting point and the code for the simulation.

• (main) eu.decideh2020.optimus.server.api.factories: A generated file for starting and creating
the service.

• (main) eu.decideh2020.optimus.server.api.impl: Elements needed for the implementation of
the main java files placed in (main) eu.decideh2020.optimus.server.api package.

• (gen) eu.decideh2020.optimus.server.api: Elements to be internally used, generated by
swagger.

• (gen) eu.decideh2020.optimus.server.model: Some data structures generated by swagger and
completed by TECNALIA.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 19 of 28

www.decide-h2020.eu

3.2 Installation instructions

The DECIDE OPTIMUS tool has too different parts of code, the eclipse plugin and the project maven
with the server. The installation of the eclipse plugin requires the eclipse IDE. The installation of the
server should be done in an accessible infrastructure.

The software needed for running OPTIMUS classification M24 prototype is available in this url:

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

For running OPTIMUS plugin tool M24 prototype, via Eclipse java project:

a. Start Eclipse IDE (Eclipse Oxygen)
b. Clone the repository indicated above
c. Import the following projects:

i. eu.DECIDEh2020.optimus
ii. eu.decideh2020.optimus.client (as maven project)

iii. AppController (as maven project)
d. Run as maven install eu.decideh2020.optimus.client and AppController.
e. Include in the build path of eu.DECIDEh2020.optimus project, the jar obtained from

eu.decideh2020.optimus.client
f. Run As an Eclipse application.

There are some lines of code where this version includes some specific URLs and credentials. Before
running OPTIMUS, these lines should be changed:

• SimulateSchema.java in eu.DECIDEh2020.optimus project:
o Line 154: Substitute Appurl by the git url where is stored the application description

JSON file.
o Line 162. Substitute URLoptimusserver by the URL where OPTIMUS server is

installed.

• SimulatorThread in eu.decideh2020.optimus.server project:
o Line 130: Substitute user and password by credentials to access to the git where the

application description JSON file is placed.
o Line 301: Substitute acsmiServicesURL by the URL where ACSmI is installed.

For installing and running the server the following software is needed:

- Docker to create the container.

To get the prototype up and running it must to follow these steps:

1. Download the source code from the DECIDE repository.

git clone

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

2. Go to the folder where the docker file is located:

cd <OPTIMUS server folder>\
eu.decideh2020.int.optimus.server.src.dvp\src\main\docker

i. Build the docker image with the following arguments:

docker build -f /docker.optimus.server -t

tecnalia/eu.decideh2020.int.optimus.server

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 20 of 28

www.decide-h2020.eu

ii. Run the docker image with the following arguments:

docker run -d --restart=always -p 8090:8090 --name

eu.decideh2020.optimus.server

tecnalia/eu.decideh2020.optimus.server

3.3 User Manual

Once the developer runs the plugins, he must create a new DECIDE JSON file, containing the application
description, licking right mouse button and selecting New Other

Figure 8. Creation of a new file.

In the next window, select “DECIDE project” from the DECIDE Wizards option

Figure 9. Selection of the DECIDE Editor file.

Then, indicate the Project name, the local folder, and the information about the git repository where
the JSON file is stored for “Clone Remote Repository” option.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 21 of 28

www.decide-h2020.eu

Figure 10. Selection of the DECIDE JSON file’s information.

When selecting the “Finish” button, the initial content of the file is shown in the first tab of the editor.

Figure 11. Initial new file.

The first three tabs correspond to the current version of the General Editor and show the JSON file in
raw (DECIDE.json tab), the information as a UI (Project tab) and the information about the NFRs (NFR
Editor tab). These tabs are not part of the OPTIMUS tool and they are implemented under the
ARCHITECT tool.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 22 of 28

www.decide-h2020.eu

OPTIMUS and ARCHITECT are two tools that can be executed in an Eclipse framework, so they need
first a General Editor to allow the developer to introduce the general data about the Application, as
well as the DevOps framework does.

The first OPTIMUS tab is the Classification tab. The new file has by default just one microservice, and
the classification tab reflects this situation:

Figure 12. Classification tab.

The simulation tab is the area where the developer, once the information about the microservices has
been fulfilled, can launch the simulation for that specific application.

Figure 13. Simulation tab.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 23 of 28

www.decide-h2020.eu

For classifying a microservice in the Classification tab, this prototype assigns the "Computer" value by
default allowing the developer to change it to "Computing Public IP" if he considers it more
appropriate.

Each microservice can have a detachable resource associated to it, of which the developer has to
introduce the name and select the DB aspect when corresponds. In that moment, the value of its
classification will change, and it will show the value "db", otherwise the value will be "storage".

More microservices can be added using the General Editor Tab, but the detachable resources can only
be specified through the Classification tab. These elements are considered elements associated to a
principal microservice, and in the simulation they will be deployed in the same Cloud Service as its
main microservice.

The DECIDE.json for the SockShop application [8] can be analyzed in the following pictures:

Figure 14. Classification tab for SockShop Application example.

The Classification tab is complete for that example and if the developer wants to obtain a deployment
schema for that application considering the NFRs stablished and the characteristics of the
microservices, he must push the “Simulate” button to launch the REST service that performs the
simulation process.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 24 of 28

www.decide-h2020.eu

Figure 15. Simulation launched.

Figure 16. Deployment Schema.

The result of the simulation appears in the textbox and the elements of the deployment schema
obtained are:

- index: internal index to identify a specific association of CSid and microservices Ids. It is useful
for the further deployment process. Not appearing in this tab.

- List of elements composed by:
o Group of microservices id: The ids of the microservices that should be deployed in the

Cloud Service mentioned bellow.
o Cloud Service id: The id of a selected Cloud Service. The information about this CS can

be found in the ACSmI Discovery registry.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 25 of 28

www.decide-h2020.eu

For example, the schema saved into the DECIDE.json following Figure 16 result
"schema" : [{
 "microservices" : ["de5d2442-09bc-4d59-99ff-ddfe5724fa5c", "c57a1fbd-d0ef-
43c4-912d-5b7a5d066320", "0f53359b-bb7d-43bf-9c13-e944291e9ad4", "b6bfeb8d-f881-
4e4f-9b0c-044506fd39d4"],
 "csId" : "16",
 "index" : 0
 }, {
 "microservices" : ["71948dd0-f8d0-4bfc-b262-50dd04661013", "7407e313-d2fc-
44a9-8830-73c85d4d17c6"],
 "csId" : "23",
 "index" : 1
 }, {
 "microservices" : ["0b7af2fb-52d9-435a-bb99-bd2b61ffa789", "d9bf985e-1a35-
4d26-a499-b2fdc6830055", "2ffa33ff-1f6f-4197-9199-48b7040386d2", "69d265aa-fb64-
43b2-934a-a87278827c9c", "15f66315-bd6b-41d5-837a-a0b94e188978", "01420849-546d-
4c34-950b-5d7171c495f5"],
 "csId" : "8",
 "index" : 2
 }, {
 "microservices" : ["52ee44fe-dcef-479d-a6f8-2b761cc65d07", "17151dde-ec54-
488c-b9f1-638fd15b2c28"],
 "csId" : "19",
 "index" : 3
 }, {
 "microservices" : ["eabad57d-7cae-4e2b-bebf-1d95b8534f53", "e524abef-6814-
4724-bad6-4ac048c917e0"],
 "csId" : "7",
 "index" : 4
 }],

This Schema means that the microservices corresponding to these ids: "de5d2442-09bc-4d59-99ff-
ddfe5724fa5c", "c57a1fbd-d0ef-43c4-912d-5b7a5d066320", "0f53359b-bb7d-43bf-9c13-
e944291e9ad4", "b6bfeb8d-f881-4e4f-9b0c-044506fd39d4 will be deployed in the Cloud Service
stored in ACSmI registry with the number 16. This row or specific association, is called as an individual
deployment number 0 (index).

The following individual deployments have the same meaning. They are four more, in total five Cloud
Services used to deploy the whole application.

3.4 Licensing information

The information about the license under which the software will be distributed, has been placed at the
header of all the code files (*.java files).

These headers are composed of the following lines:

/***

* Copyright (c) 2018 Tecnalia.

*

* This program and the accompanying materials are made

* available under the terms of the Eclipse Public License 2.0

* which is available at https://www.eclipse.org/legal/epl-2.0/

*

* SPDX-License-Identifier: EPL-2.0

* Contributors (in alphabetical order):

* Alberto Molinuevo Tecnalia

* Gorka Benguria Tecnalia

* Iñaki Etxaniz Tecnalia

* Juncal Alonso Tecnalia

* Leire Orue-Echevarria Tecnalia

* Maria Jose Lopez Tecnalia

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 26 of 28

www.decide-h2020.eu

* Marisa Escalante Tecnalia

* Initially developed in the context of DECIDE EU project www.DECIDE-h2020.eu

**/

3.5 Download

The eclipse java source code of the OPTIMUS project is available in the DECIDE open git repository,
accessing this URL:

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M24/OPTIMUS

This code is the project with the source code corresponding to the DECIDE OPTIMUS classification tool
M24 prototype.

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M24/OPTIMUS

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 27 of 28

www.decide-h2020.eu

4 Conclusions

This deliverable presents the evolution of the DECIDE OPTIMUS tool and its status as M24 prototype.
Future versions of this deliverable will include the final version of the tool, covering all the features
that the DECIDE OPTIMUS tool will provide to the developer.

The details about the functionality and the technical aspects are described in the corresponding
sections as well as the manual and the instructions to test the software.

The evolution of the application description and the need to integrate all the DECIDE tools, could lead
to modifications of all DECIDE tools and their interactions, and consequently OPTIMUS will have to
adapt to the new schema.

The most important future step for OPTIMUS is the algorithm for establishing the different possibilities
of combinations of the available cloud services, to present the best schema considering not only the
NFRs and the characteristics of the microservices but also the impact the selection of a specific pattern
would have over the best schema for the deployment.

http://www.decide-h2020.eu/

D3.8 – Intermediate DECIDE OPTIMUS Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 28 of 28

www.decide-h2020.eu

References

[1] DECIDE Consortium, “D3.5 – Intermediate profiling and classification techniques,” 2018.

[2] DECIDE, “D3.4 Initial profiling and classification techniques.,” 2017.

[3] S. Software, “SWAGGER,” 2018. [Online]. Available: https://swagger.io/. [Accessed November
2018].

[4] W3C, “Web Services Architecture,” 2004. [Online]. Available:
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest. [Accessed November
2018].

[5] DECIDE Consortium, “D3.7 Initial DECIDE OPTIMUS,” 2017.

[6] I. Eclipse Foundation, “WindowBuilder,” [Online]. Available:
https://www.eclipse.org/windowbuilder/. [Accessed 2018].

[7] T. A. S. Foundation, “Apache Maven project,” 2018. [Online]. Available:
https://maven.apache.org/. [Accessed 2018].

[8] I. Weaveworks, “Sock Shop: A Microservices Demo Application,” 2017. [Online]. Available:
https://github.com/microservices-demo/microservices-demo/blob/master/internal-
docs/design.md. [Accessed November 2018].

http://www.decide-h2020.eu/

