
D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 1 of 53

www.decide-h2020.eu

Deliverable D2.4

Integrated architecture v1

Editor(s): Juncal Alonso

Responsible Partner: TECNALIA

Status-Version: Final - v1.0

Date: 30/11/2017

Distribution level (CO, PU): PU

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 2 of 53

www.decide-h2020.eu

Project Number: GA 731533

Project Title: DECIDE

Title of Deliverable: D2.4 – Detailed architecture v1

Due Date of Delivery to the EC: 30/11/2017

Workpackage responsible for the
Deliverable:

WP2 – DECIDE requirements and DECIDE solution
integration

Editor(s): TECNALIA

Contributor(s):

Juncal Alonso, Gorka Benguria, Marisa Escalante,
Maria Jose Lopez, Iñaki Etxaniz (TECNALIA), Luis
Miguel, Javier Gavilanes, Gema Maestro (Experis),
Lorenzo Blasi, Paolo Barone (HPE), Lena Farid, Majid
Salehi,Simon Dutkowski (Fraunhofer), Anna
Mikhailova, Andrey Sereda(CB)

Reviewer(s): TECNALIA

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5

Abstract: This deliverable will contain the first version of the
detailed design of DECIDE framework: its components,
modules, interfaces.

Keyword List: Architecture, components, technical design,
interfaces, interoperability, deployment, DevOps.

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and the
Commission is not responsible for any use that may be
made of the information contained therein

http://www.decide-h2020.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 3 of 53

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 21/07/2017 First draft version including TOC TECNALIA

v0.2 07/09/2017 Sections assignments agreement. TECNALIA

V0.3 21/09/2017 Included content in sections: 2.4, 3.1.1,
3.3.1, 3.3.3.

TECNALIA

V0.4 09/10/2017 Included content in sections: 2.1, 2.2,
2.4, 2.5, 3.1.2, 3.3.1, 3.3.2, 3.4.2, 4 (draft
text with the main ideas).
Included comments in section 3.3.3.

Fraunhofer, TECNALIA,
CB.

V0.5 16/10/2017 Included content in sections: 2.5, 3.4.1. HPE.

V0.6 16/10/2017 Included content in sections: 2.3, 3.2.1. Experis

V0.7 18/10/2017 Included content in sections: 1, 2.1.
Included new annex

TECNALIA

V0.8 23/10/2017 Included content in sections: 2 (picture),
4, 5.

TECNALIA

V0.9 24/10/2017 Included content in section 4.
Included references (section 6).
Included terms and abbreviations
Adapted content so that all the sections
cover equivalents ideas.

TECNALIA

V0.10 24/10/2017 Updated content in Annex 1: App
description.

HPE

V0.11 30/10/2017 Added sub-section in section 2 (2.6-
Sample multi-cloud application in
DECIDE: Sock shop application)
Updated content in section 3.3.3
Updated content in section 4
Updated content in Annex 1

TECNALIA

V0.12 16/11/2017 Updated content in Annex 1
Updated content in section 2.5, 3.3.2.

TECNALIA, HPE,
Fraunhofer.

V0.13 17/11/2017 Updated content in Annex 1

TECNALIA, Experis.

V1.0 21/11/2017 Internal review comments addressed TECNALIA, Fraunhofer.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 4 of 53

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 5

List of Tables .. 6

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction ... 9

1.1 About this deliverable ... 9

1.2 Document structure .. 9

2 Overview of the DECIDE integrated conceptual architecture ... 10

2.1 Multi-Cloud classification .. 10

2.2 DECIDE Tools for multi-cloud applications design and development 11

2.2.1 NFR editor .. 11

2.2.2 ARCHITECT ... 11

2.3 DECIDE Tools for multi-cloud applications continuous integration and continuous testing 11

2.3.1 DevOps framework .. 11

2.4 DECIDE Tools for multi-cloud applications (pre) deployment ... 12

2.4.1 OPTIMUS ... 12

2.4.2 App Controller ... 12

2.4.3 ACSmI .. 12

2.5 Tools for multi-cloud applications continuous deployment and operation 13

2.5.1 ADAPT deployment and monitoring ... 13

2.5.2 MCSLA editor ... 13

2.6 Sample multi-cloud application in DECIDE: Sock shop application 13

3 Detailed DECIDE integrated architecture .. 15

3.1 Tools for multi-cloud applications design and development .. 15

3.1.1 NFR editor .. 15

3.1.1.1 Structural description .. 15

3.1.1.2 Behavioural description ... 16

3.1.2 ARCHITECT ... 17

3.1.2.1 Structural description .. 17

3.1.2.2 Behavioural description ... 19

3.2 Tools for multi-cloud applications continuous integration and testing 20

3.2.1 DevOps framework .. 20

3.2.1.1 Structural description .. 20

3.2.1.2 Behavioural description ... 22

3.3 Tools for multi-cloud applications (pre) deployment ... 23

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 5 of 53

www.decide-h2020.eu

3.3.1 OPTIMUS ... 23

3.3.1.1 Structural description .. 23

3.3.1.2 Behavioural description ... 25

3.3.2 Application controller .. 26

3.3.2.1 Structural description .. 26

3.3.2.2 Behavioural description ... 27

3.3.3 ACSmI .. 27

3.3.3.1 Structural description .. 27

3.3.3.2 Behavioural description ... 32

3.4 Tools for multi-cloud applications continuous operation ... 33

3.4.1 ADAPT .. 33

3.4.1.1 Structural description .. 33

3.4.1.2 Behavioural description ... 34

3.4.2 MCSLA Editor ... 36

3.4.2.1 Structural description .. 36

3.4.2.2 Behavioural description ... 38

4 DECIDE tool suite deployment .. 39

4.1 DECIDE tools deployment options .. 39

4.2 Information exchange between DECIDE tools .. 39

5 Conclusions .. 41

References ... 42

Annex 1: APP DESCRIPTION ... 43

List of Figures

FIGURE 1. DECIDE INTEGRATED GENERIC ARCHITECTURE. .. 10
FIGURE 2. SOCK SHOP APPLICATION MAIN COMPONENTS [7] .. 14
FIGURE 3. NFR EDITOR COMPONENT DIAGRAM .. 15
FIGURE 4. NFR EDITOR EXTERNAL INTERFACES COMPONENT DIAGRAM ... 16
FIGURE 5. NFR EDITOR SEQUENCE DIAGRAM. ... 17
FIGURE 6 COMPONENTS OF ARCHITECT .. 18
FIGURE 7. USE CASES OF ARCHITECT .. 19
FIGURE 8 CREATE NEW DECIDE PROJECT, SEQUENCE DIAGRAM. ... 20
FIGURE 9. DEVOPS FRAMEWORK COMPONENT DIAGRAM ... 21
FIGURE 10. DEVOPS FRAMEWORK INTERFACES DIAGRAM .. 22
FIGURE 11. DEVOPS FRAMEWORK SEQUENCE DIAGRAM .. 23
FIGURE 12. OPTIMUS COMPONENT DIAGRAM .. 24
FIGURE 13. OPTIMUS EXTERNAL INTERFACES COMPONENT DIAGRAM ... 25
FIGURE 14. OPTIMUS SEQUENCE DIAGRAM ... 25
FIGURE 15. COMPONENT DIAGRAM FOR APPLICATION CONTROLLER .. 26
FIGURE 16. SEQUENCE DIAGRAM FOR WRITING AND READING DEPLOYMENT CONFIGURATION 27

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 6 of 53

www.decide-h2020.eu

FIGURE 17. ACSMI HIGH LEVEL ARCHITECTURE .. 29
FIGURE 18. ACSMI EXTERNAL INTERFACES ... 31
FIGURE 19. ACSMI SEQUENCE DIAGRAM .. 32
FIGURE 20. ADAPT COMPONENT DIAGRAM AND INTERFACES .. 33
FIGURE 21. INTERACTIONS OF ADAPT WITH OTHER DECIDE TOOLS ... 35
FIGURE 22. COMPONENT DIAGRAM FOR MCSLA EDITOR .. 37
FIGURE 23. SEQUENCE DIAGRAM FOR CREATING AN MCSLA .. 38

List of Tables

TABLE 1. APPLICATION DESCRIPTION MODEL FOR DEPLOYMENT ... 43
TABLE 2. APPLICATION DESCRIPTION MODEL FOR MONITORING THE APPLICATION VIA ITS MCSLA (NESTED ELEMENTS FOR

“APP_MCSLA”) .. 49
TABLE 3. NESTED ELEMENTS FOR MICROSERVICE_SLAS .. 49
TABLE 4. NESTED ELEMENTS FOR MICROSERVICE_SLO AND MICROSERVICE_SQO .. 50
TABLE 5. NESTED ELEMENTS FOR VIOLATIONTRIGGERRULE ... 50
TABLE 6. NESTED ELEMENTS FOR REMEDY ... 51
TABLE 7. MCSLA METRIC DATA MODEL FOR MONITORING ... 51
TABLE 8. NESTED ELEMENTS FOR EXPRESSION .. 52
TABLE 9. NESTED ELEMENTS FOR PARAMETER .. 53
TABLE 10. NESTED ELEMENTS FOR RULE .. 53

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 7 of 53

www.decide-h2020.eu

Terms and abbreviations

API Application Programming Interface

App Application

APP Application

CSP Cloud Service Provider

DB Data Base

DevOps Development and Operation

DoA Description of Action

EC European Commission

IDE Integrated Development Environment

KR Key Result

M12 Month twelve

M23 Month twenty-three

MCSLA Multi Cloud Service Level Agreement

NFR Non-Functional Requirement

RCP Rich Client Platform

SDK Software Development Kit

SLA Service Level Agreement

Sw Software

UI User Interface

WP Work Package

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 8 of 53

www.decide-h2020.eu

Executive Summary

This document provides the specification of the DECIDE integrated architecture at month 12, a first
specification1 of the entire DECIDE integrated architecture, aiming to ensure a smooth integrated
specification at conceptual, functional and technical level of the different building blocks, i.e. Key
Results, that constitute the DECIDE tool-suite. DECIDE tool-suite enables users (developers and
operators) of multi-cloud applications to implement the DECIDE extended DevOps approach, by
providing a comprehensive set of tools that assists users to complete the DECIDE lifecycle [1].

DECIDE comprises diverse technical and scientific activities that contribute altogether to the jointly
materialization of the DECIDE outcomes. However, a successful instantiation of these techniques and
tools requires an integration task force, materialized in this document, which aims to converge these
different conceptual and technical approaches and the earlier detection and fixing of potential
misalignments that may occur during the initial design and development phases.

In this scope, the global and integrated architecture described in this document aims to: a) provide an
overall and comprehensive conceptual and functional description of the DECIDE tool-suite in their
current state, b) ensure a smooth conceptual and technical interoperability among DECIDE tools that
guarantees a correct instantiation of the DECIDE extended DevOps approach, c) describe the tools
interoperability needs in terms of messages consumed and provided by each tool, d) provide a detailed
structural and behavioural view of the different tools, grouped on packages of related functionality
(with respect to the DECIDE extended DevOps approach, and e) expose and discuss the available
possibilities for the deployment of DECIDE tool-suite. The current document is describing at general
level the different components inside the DECIDE tool suite, the details of the components are
described in the deliverables to be generated in the different technical WPs (WP3, WP4 and WP5).

To conclude, this document will be continuously checked, used, aligned and updated as a result of
other DECIDE activities during the design and development of their components and tools (a second
version of the deliverable will be delivered in M23), to ensure that they are conceptually and
technically aligned and compatible with others as these may need to interoperate with.

1 Final specification will be released on M23

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 9 of 53

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

This document provides the M12 specification of the DECIDE integrated architecture. This architecture
collects and describes the main functional key results, tools and components that constitute the
DECIDE tool-suite, that is, the comprehensive set of tools created by DECIDE, for developers and
operators of multi-cloud applications to apply the DECIDE DevOps extended approach.

DECIDE Key Results (and related tools and components) are described as functional blocks, including
structural and behavioural aspects. The descriptions of the components included in this document aim
to provide a general overview of the functionalities of the key results and the interactions between
them. The internal representation of the tool (i.e. its internal technical specification) is not addressed
in the document but left to further dedicated technical reports (for each tool) that will describe them,
along with the actual implementation in the different releases [2].

This overall description aims to prove a complete and correct coverage of the DECIDE extended DevOps
approach, providing means (in form of tools and components) to support each phase of the approach.

Special attention is also given to address interoperability between tools, that is, the dependencies
between tools and the technical ways in which those dependencies are managed. Interoperability
implies taking care of different dimensions and which allows us to identify and define:

• Messages exchange, including compatibility at data content (semantic alignment), data
format, serialization format, etc.

• User-driven interaction model, as we foreseen most of interoperable situations driven by end-
users of the tools.

This analysis enables to obtain an earlier detection of possible conceptual and technical misalignments
(among tool providers), either at conceptual level (i.e. semantics), or at functional and a technical level.
Based on this analysis, the document proposes a harmonized conceptual, functional and technical
common view that removes these misalignments and enables the specification (by each tool provider)
of an interoperable tool design. In particular, the dependencies amongst tools are identified by
detecting the products they consume (as inputs) and produce (as outputs), which would be in turn
produced and consumed by other tools.

The document also presents and discusses the different possibilities for the deployment of the tools
to be implemented in DECIDE and for the whole DECIDE Framework.

1.2 Document structure

This document is structured as follows.

Section 2 provides an overall conceptual and functional introduction to the entire DECIDE tool-suite,
an introduction to the DECIDE multi-cloud concept and to the DECIDE proposed extended DevOps
approach. Section 3 provides a detailed description of each DECIDE tool, individually and on the scope
of the interactions with other tools in DECIDE tool-suite, structural (i.e. component dependencies,
required and provided interfaces, etc.) and behavioural (i.e. temporal ordered interactions), attending
mainly to interoperability concerns. Section 4 describes the deployment alternatives for the DECIDE
tools, both as individual components and as an ecosystem as a whole. Section 5 shows up some
conclusions of the document.

In the Appendix of the document, the current version of the App Description, which is the main
mechanism for the interchange of information between tools in DECIDE, is presented.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 10 of 53

www.decide-h2020.eu

2 Overview of the DECIDE integrated conceptual architecture

This section sketches the structural view of the DECIDE tool-suite architecture. More elaborated
behavioural and structural views of the DECIDE tool-suite architecture will be presented in next
sections.

This DECIDE architecture sketch (figure 1) is structured in blocks that correspond to the main DECIDE
key results and are co-located extended DevOps phases for multi-cloud applications as defined in [1],
i.e. . 1- Design and development, 2- continuous integration and testing, 3- pre-deployment, and 4-
continuous operation, to introduce the DECIDE KRs. Some of the KRs (i.e. ACSmI) support several
phases of the DECIDE DevOps extended approach. In the figure below two elements are depicted in a
different way in order to stress their singularity:

• DevOps framework: DevOps framework is one of the KRs of DECIDE. It is singular because, on
one hand, it includes the necessary existing tools for development and integration (i.e.
software repository, software development Kit, IDEs, etc.) and on the other hand, it provides
the means to integrate the rest of the KRs in a unique stable toolkit (UIs, actions handling,
etc.). More information about the DevOps framework is provided in section 3.2.1.

• App Description: Application Description (App Description from now on) is not a DECIDE KR,
tool or component as such. It is a file where the actual status of the application is described.
This file is used for the different KRs in DECIDE to store/acquire information about relevant
information with respect to the application needed to the correct operation of the different
tools. More information about the Application Description is provided in section 4 and in
Annex 1.

Figure 1. DECIDE integrated generic architecture.

2.1 Multi-Cloud classification

In the context of DECIDE a multi-cloud application is defined as a set of components distributed across
heterogeneous cloud resources but that still succeed in interoperating as a single whole.

As described in D2.1 [1], multi-cloud is the use of multiple computing services for the deployment of a
single application or service across different cloud technologies and/or Cloud Service providers. This
may consist of PaaS, IaaS and SaaS entities in order to deliver an integrated end to end solution

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 11 of 53

www.decide-h2020.eu

This definition of multi-cloud, when referring to the resources where the different components are
deployed, includes services which are in disperse cloud providers or different cloud platforms
(regardless of vendor) [3]:

• Deployment of services across multiple geographically dispersed cloud service providers.

• Deployment of services across different cloud technologies within a single cloud service
provider.

• Deployment of services within a single cloud service provider in one technology.

2.2 DECIDE Tools for multi-cloud applications design and development

2.2.1 NFR editor

NFR editor is the component where the developers can state the NFR they want to consider during the
development and operation of the multi-cloud application. The NFRs can be qualitative, quantitative
or both. In the context of DECIDE action the NFRs are closed to the following characteristics:
Availability, cost, location, security (legal), performance, scalability but they can be extended with new
ones when needed (NFR editor will provide means for this).

The selected NFRs that will be considered during the whole DECIDE process:

1. During the design phase, for proposing the most appropriate architectural design for
complying the selected NFRs;

2. In the pre-deployment phase for performing the simulation with the objective of fulfilling the
NFRs;

3. In the continuous operation phase for monitoring and assessing that the selected NFRs are
being fulfilled at run-time.

2.2.2 ARCHITECT

The ARCHITECT tool consists of a catalogue of architectural patterns. These patterns serve for the
optimization, development and deployment of applications to become multi-cloud aware. The idea is
to present the developers with a set of patterns to apply to their code. These patterns will be suggested
to the developers based on the selected and prioritized NFRs as well as on additional data concerning
the application. The ARCHITECT tool is to be used by the developers at their discretion in the design
phase. The ARCHITECT tool is also closely related to the development phase. as the patterns suggested
provides a description of how these patterns can and may be applied to the source code.

2.3 DECIDE Tools for multi-cloud applications continuous integration and
continuous testing

2.3.1 DevOps framework

The DevOps framework is the integration point for all DECIDE tools and Key Results. It provides three
main functionalities:

1. It serves as entry point to DECIDE. A user wishing to utilize the tools will do so through the
DevOps framework.

2. It integrates the different tools and KRs. It provides access to them, a UI to check information
about the projects (microservices data, metrics, SLAs violations, etc.) and centralizes the UIs
of all tools.

3. It orchestrates the workflow. The DevOps framework will launch the appropriate tool for each
phase of the application’s lifecycle.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 12 of 53

www.decide-h2020.eu

2.4 DECIDE Tools for multi-cloud applications (pre) deployment

2.4.1 OPTIMUS

OPTIMUS deployment simulation tool will be responsible for evaluating and optimizing the non-
functional characteristics from the developer’s perspective considering a set of provided cloud
resources alternatives. OPTIMUS, working with the continuous deployment supporting tool (DECIDE
ADAPT), will provide the best possible deployment application topology, based on the non-functional
requirements set by the developer, automating the provisioning and selection of deployment scripts
for multi-cloud applications.

2.4.2 App Controller

The functionality of the Application Controller as understood by the DECIDE consortium should reflect
the status and state of the application and connect this application status and state with the DECIDE
tools in the sense of enabling each tool to understand its corresponding fulfilments.

This functionality has been conceptualised and solutions for various components and parts of the
Framework have been introduced. These are:

• Application Description (JSON File) (see Section 4) – is an information model specific to the
DECIDE Application and is stored in a repository (e.g. Git) to be accessed by each tool. Each
tool shares needed information by pushing and pulling from a dedicated repository. With this
solution, an interoperable mechanism has been introduced. Furthermore, no running service
is required, which limits a single point of failure and allows the tools to function individually.

• Application Manager (see ¡Error! No se encuentra el origen de la referencia.) is a reusable
component and holds the logic for the Application Description, i.e. the model. It also allows
reading and writing from the code repository.

• Triggering the tools depending on the current state of the application and the order of the
workflow, via e.g. a Continuous Integration (CI) tool. (This will be sketched out in more detail
in year 2 of the project).

Furthermore, the Application Controller component assists in managing the knowledge regarding the
currently used deployment configuration and historical ones. It keeps records whether a deployment
configuration was successful and if any SLA violations had occurred in the application operation time.
With this information, OPTIMUS is able to suggest new and adequate deployment configurations. This
is described in more detail in Section ¡Error! No se encuentra el origen de la referencia.. In the next s
tage of the project (year 2), the Application Controller will attain additional functionalities as described
in the DoA [2].

2.4.3 ACSmI

The Advanced Cloud Service (meta-) Intermediator (ACSmI) will provide means to assess continuous
real-time verification of the cloud services non-functional properties fulfilment and legislation
compliance enforcement. ACSmI will be solution-centric as it will be able to discover services from a
range of services available in a service registry, always making sure that the best combination for the
user ((i.e. OPTIMUS and ADAPT)) is met, while ensuring the integrity and security of the overall ACSmI
solution. ACSmI will also be able to ensure the governance and overall quality of the service provision
to the customer by continuously monitoring the fulfilment of the SLAs as well as propagating the
legislation changes.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 13 of 53

www.decide-h2020.eu

2.5 Tools for multi-cloud applications continuous deployment and
operation

2.5.1 ADAPT deployment and monitoring

DECIDE ADAPT tool offers the following functionalities: deployment of multi-cloud applications,
monitoring of the deployed applications to verify if the declared MCSLA is satisfied or not, and
deployment adaptation to cope with identified violations.

ADAPT uses information from the Application Description to generate and apply the scripts for the
deployment of the multi-cloud application. ADAPT uses ACSmI as a unified interface to create, monitor
and release CSP resources. ADAPT continuously monitors the MCSLA and in case of a violation (from
either the application or the underlying CSP resources), it informs the operator and triggers the
redeployment process. Redeployment can be automatic for a low technology risk application or
subject to operator’s confirmation for a high technology risk one.

2.5.2 MCSLA editor

The MCSLA Editor module is part of the continuous operation phase and serves as the user interface
(UI) through which the developer will specify the multi-cloud SLAs agreed with the client. The MCSLA
editor provides the developer all the possible SLOs and SQOs, which may partly incorporate default
values, aggregated values or overwritten values depending on the values resulting from the contracted
CSPs. This resulting MCSLA serves as the contract between the developer and the users of the
application. Additionally, the MSCLA will be used for monitoring purposes.

2.6 Sample multi-cloud application in DECIDE: Sock shop application

DECIDE integrated architecture and the included components and tools will be tested and validated
through the different DECIDE use cases, which are being described in several deliverables in DECIDE
[4] [5]. The final requirements of the use cases will be delivered at the same time as this deliverable.
For this reason, for the first version of the prototypes to be delivered in M12, as well as for the
conceptual definition of the architecture included in this report, a sample “multi-cloud compliant”
application has been chosen, in order to be able to prove and execute all the DECIDE components with
the same “multi-cloud” based application. The application chosen has been the Sock Shop application

The Sock Shop application is a micro-services-based application used to illustrate micro-services
architectures [6]. Sock Shop application implements the front-end of a website that sells socks and
each of the components is implemented as a micro-service. The application is intended to aid the
demonstration and testing of micro-service and cloud native technologies.

The application is structured into 7 main components, Payment, Orders, Carts, Catalogue, Users,
Shipping and Queue Master. These 7 components can be used as the components to be deployed into
different cloud resources, following the DECIDE definitions for multi-cloud applications (see section
2.1).

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 14 of 53

www.decide-h2020.eu

Figure 2. Sock Shop application main components [7]

This Sock Shop application can be deployed using different technologies and frameworks as described
in [6]. Each of the DECIDE partners implementing the different components in the architecture has
used its own deployment of the Sock Shop application (i.e. Kubernetes, Docker), focusing on the most
relevant aspects for its specific needs. In the next releases of the DECIDE components, the same
instance of the Sock Shop application will be used, as the first step to provide an integrated ecosystem
for the use cases applications.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 15 of 53

www.decide-h2020.eu

3 Detailed DECIDE integrated architecture

3.1 Tools for multi-cloud applications design and development

3.1.1 NFR editor

NFR editor is the component where the developers can state the NFRs that they want to consider
during the development and the operation of the multi-cloud application.

3.1.1.1 Structural description

The NFR editor will support the developer in the “continuous architecting” phase, as it will be the main
mean to select the relevant NFRs (qualitative) so that ARCHITECT can propose specific patterns for
them. The NFR list is closed, for the context of DECIDE, to the following characteristics: availability,
cost, location, security (legal), performance, and scalability but it can be extended with new ones when
needed.

The NFR editor will also support the developer in the “pre-deployment” phase for detailing the
previously selected NFRs. In this step, the NFR editor will provide the means for the developer for
selecting the concrete values of some of the NFRs (only those that can be quantified i.e. cost, location)
and applying these values to concrete components of the multi-cloud application.

The main functionalities of the NFR editor are:

• Provide the available qualitative NFRs, and the means to select them at application level.

• Provide the available quantitative NFRs, and the means to detail their values at component
level.

• Provide the means to store the selected NFRs (qualitative and quantitative).

In the next figure, the sub-components of the NFR editor are showed and explained afterwards:

Figure 3. NFR editor component diagram

The NFR editor is composed of the following sub-components:

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 16 of 53

www.decide-h2020.eu

NFR editor UI

This subcomponent provides the graphical user interface of the NFR editor, both for selecting the
qualitative NFRs at the continuous architecting phase and for detailing the quantitative values for each
component. The NFR editor UI will be loaded when ARCHITECT or OPTIMUS call it, through the NFR
editor engine.

NFR registry

The NFR registry stores the available NFRs to be loaded by the NFR editor UI. This registry will be static,
and it will contain the possible NFRs and the possible values to be assigned.

NFR editor engine

The NFR editor engine is the component that manages the different activities to be carried out by the
NFR editor. This sub-component gets the requests from ARCHITECT and OPTIMUS and triggers the
different sub-components inside the NFR editor. It also stores the values of the selected NFRs in the
App Description.

NFR editor will communicate with ARCHITECT and OPTIMUS for getting the requests to select the NFRs,
with App Description to store the selected values for the NFRs of the different components and with
the DevOps framework for providing the UI in the integrated DECIDE framework.

In the following diagram, the external interfaces of the NFR editor are shown:

Figure 4. NFR editor external interfaces component diagram

3.1.1.2 Behavioural description

In the next picture, the interaction between the NFR editor and other components in DECIDE is shown
as well as the messages they share:

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 17 of 53

www.decide-h2020.eu

Figure 5. NFR editor sequence diagram.

1. Select qualitative NFRs: The developer through the DevOps Framework UI (or the UI of the
NFR editor) selects the corresponding NFRs from the list provided by the NFR editor.

2. Provide qualitative NFRs: ARCHITECT gets the selected NFRs from the NFR editor.
3. Select quantitative NFRs: The developer through the DevOps Framework UI (or the UI of the

NFR editor) selects the value for corresponding NFRs from the list provided by the NFR editor,
for each of the micro-services of the multi-cloud application.

4. Provide quantitative NFRs: OPTIMUS gets the selected values for the NFRs from the NFR editor.
5. Store selected NFRs: The NFR editor stores the selected NFRs and values in the Application

Description so that they can be assessed during the operation phase of the multi-cloud
application.

3.1.2 ARCHITECT

ARCHITECT supports the developer with preparing the application for a multi-cloud deployment
scenario by providing and suggesting a set of (multi-)cloud patterns, which must or should be applied
to the application.

3.1.2.1 Structural description

By means of the functional requirements, ARCHITECT is decomposed in several functional blocks and
interfaces. The ARCHITECT component has a set of functional requirements [1] that can be summed
up in the following functionalities:

• Provide/ recommend to the user (i.e. the developer) architectural patterns based on his/her
prioritized NFRs as well as additional information (supplied by the user), with guidelines on
how to apply them, to which component this needs to be applied and in which order. This
should be performed through a UI.

• Provide a repository of relevant multi-cloud patterns.

Apart from these functionalities, ARCHITECT will help to initiate the development of an application in
the context of DECIDE. This includes the creation of the DECIDE project artefacts, mainly consisting of
the application description contained in a code repository.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 18 of 53

www.decide-h2020.eu

Figure 6 Components of ARCHITECT

ARCHITECT consists of three core elements, as depicted in the figure above. A frontend for user
interaction, the application description manager for dealing with the DECIDE project model, and finally
the patterns catalogue with the pattern inference engine.

User Frontend

This element depends on the context. For example, if ARCHITECT is integrated in an IDE, this part
provides the mechanism how the ARCHITECT component is plugged in. its main task is the interaction
with the developer and it provides the necessary user interfaces to collect and maintain all the
application information and to enable the use cases (Figure 7). The User Frontend is the workflow-
controlling component of ARCHITECT.

Application Manager

This element is responsible for a convenient abstraction level for the information model of the DECIDE
application. It manages all application information in a persistent manner. That means, it encapsulates
and hides the technical details, (e.g. the fact that the application description is coded and stored as a
JSON structure inside a code repository).

Patterns

This element contains a catalogue of patterns, NFRs and their relationships. The contained information
can be enriched to hold additional information experienced over time. The patterns catalogue provides
functions that allow the inferring of patterns based on a given set of NFRs and optionally some fixed
patterns.

ARCHITECT itself does not provide any external interfaces. Nevertheless, at least the Patterns
component will be implemented as autonomous library and its functionality could be offered as micro-
service being accessible for other implementations. This allows an easy integration of ARCHITECT in a
polyglot environment. Nevertheless, ARCHITECT does consume two interfaces, one from the NFR
Editor) and the other from the OPTIMUS component).

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 19 of 53

www.decide-h2020.eu

NFR Editor

ARCHITECT utilizes the NFR Editor for collecting the set of defined non-functional requirements from
the application developer. ARCHITECT expects as return value from the editor the list of NFRs that the
developer has selected.

OPTIMUS

For a manual triggering of the simulation phase, ARCHITECT should be able to call OPTIMUS. The main
artefact transferred is the Application Description. Depending on the provided interface of OPTIMUS it
can either be referenced through the code repository or be handed over as a parameter in the API
method. The result will be returned using the same mechanism. The User Frontend and the Application
Manager may display the result in the current environment in an appropriate way.

3.1.2.2 Behavioural description

Based on the list of the functional requirements [1], several use cases for the developer were identified
(Figure 7). These are mainly the creation of a new project, a change of NFRs; a change of selected
patterns of an already existing DECIDE project; Finally, the developer or the used CI tool should be able
to enter the next DECIDE phase by triggering OPTIMUS for a deployment simulation.

Figure 7. Use Cases of ARCHITECT

By means of a sequence diagram (¡Error! No se encuentra el origen de la referencia.), the Create
DECIDE Project process will be exemplary further detailed and linked to main requirements.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 20 of 53

www.decide-h2020.eu

Figure 8 Create new DECIDE Project, sequence diagram.

1. The developer starts the creation of a new DECIDE project.
2. The User Frontend will then forward the user to the NFR Editor where she/he can select a set

of prioritized NFRs. The NFR Editor returns to ARCHITECT User Frontend with the selected list
of NFRs.

3. Next, the user is asked about general information about the application, e.g. which micro-
services are contained and how they are related to each other and to the application in
general. Furthermore, the developer is asked to select any patterns from the catalogue that
definitely apply or should apply to the application.

4. In the next step, the User Frontend part requests an initial Application Description from the
Application Manager, preliminary only memory.

5. Subsequently, based on the selected NFRs and patterns, a list of (additional) inferred patterns
is suggested to the developer.

6. After the developer has finalized the list of applied patterns for the application, the User
Frontend finishes the creation process by persisting the final Application Description using the
Application Manager.

3.2 Tools for multi-cloud applications continuous integration and testing

3.2.1 DevOps framework

3.2.1.1 Structural description

The DevOps framework is the entry point to DECIDE. It allows a user to define a new project and modify
its metadata2, and centralizes de UIs of the different tools and KRs. Besides, the DevOps framework

2 Project metadata captured form the user: i.e number of microservices, git where the project is located, users, etc.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 21 of 53

www.decide-h2020.eu

will act as the orchestrator of the DevOps workflow, launching the corresponding tool whenever
appropriate.

The following figure shows the components of the framework:

Figure 9. DevOps framework component diagram

User management

This module takes care of managing the different identities of DECIDE users. Different user roles will
have access to different sets of functionalities.

Application management

This component creates and manages the workspaces that are assigned to each application.

Microservices management

This component handles the creation and edition of microservices and their metadata.

DevOps Orchestrator

This module is in charge of launching the appropriate tool depending on the point on the workflow,
and to provide them with the necessary information.

DevOps Framework UI

This module provides a graphical interface for tasks related to applications and microservices
management.

DevOps Orchestrator UI

This component provides a graphical interface for configuring and showing information about the
DevOps tools (tools for continuous development, integration and testing) involved in the workflow.

UI Facilitator

This module facilitates the integration of the UIs of the different Key Results in the DevOps Framework.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 22 of 53

www.decide-h2020.eu

The DevOps Framework communicates with the Application Description to store the data entered by
the user; with ARCHITECT to obtain the list recommended patterns; with the DevOps tools to configure
them and display their information; and with the UIs of the different KRs, since the DevOps Framework
unifies all user interfaces. It also instructs OPTIMUS to trigger a new simulation when it corresponds.
The figure below shows these communications:

Figure 10. DevOps Framework interfaces diagram

3.2.1.2 Behavioural description

The DevOps Framework provides a graphical interface for a user to introduce information about the
application and its microservices. When that information is complete, it updates the Application
Description with it. It also configures the tools for continuous development, integration and testing
according to the provided application information.

ARCHITECT, based on the Application Description, generates a list of recommended patterns, which
then sends back to the DevOps Framework to be displayed.

While the development, integration and testing process is taking place, the DevOps Framework
receives the information reported by the corresponding tool and displays them in the UI.

It also sends OPTIMUS an order to start a new simulation, either after a direct instruction from the
user or as a result of a violation during ADAPT’s monitoring process.

The following figure shows these communications:

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 23 of 53

www.decide-h2020.eu

Figure 11. DevOps Framework sequence diagram

3.3 Tools for multi-cloud applications (pre) deployment

3.3.1 OPTIMUS

3.3.1.1 Structural description

The main functionalities in OPTIMUS are:

• Multi-cloud application classification. This functionality will include the classification of the
components that from the multi-cloud application (computing, computing IP, storage
persistency, storage DB) [8]. For this purpose, the profiling of the multi-cloud application has
to be considered as an input. This classification will be based on the information provided by
the developer and the information stored in the general applications profiling repository.

• Theoretical deployment generation. Once the classification is made, and the NFRs gathered, it
will perform a process where it will obtain a theoretical schema for the deployment. This
schema will be composed of generic types of CSPs, associated to the types set to the micro
services. With these generic types of CSPs suitable for the components, a request will be made
to the corresponding service of ACSmI. This functionality requires the “CSP modelling”
functionality to be available.

• Simulation. The combination of the different possibilities of deployment, taking into account
the theoretical deployment and the sorted list of CSPs (from ACSmI) that suit them, will be
ranked in order to select the best ones. The schema with the needed information for the App
controller will be built and shown to the developer to confirm it.

The figure below shows the components and sub-components that will support the listed
functionalities:

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 24 of 53

www.decide-h2020.eu

Figure 12. OPTIMUS component diagram

Application classification

The input for this classification task will come from the developer (the UI will show information to him
to complete and confirm), and it will be matched with the information stored about types of multi-
cloud applications, and the characteristics associated to each of those types. The output will be loaded
into Apps classification repo. This information will be part of the App Description.

The Types management component will manage the system knowledge about types of multi-cloud
applications. This information is related to the defined CSP types (ACSmI).

Theoretical deployment generation

The Deployment Types repo will contain information about the micro-services types and the CSPs on
which they could be theoretically deployed. The maintenance of this repo will be performed by the
Deployment types management module. At this point of the project, it will be static information but
later on it should be updated with the data provided by ACSmI.

Taking as input the multi-cloud application classification (micro-services) and the Apps NFRs, the
theoretical deployment generation component will access the Deployment Types repo to obtaining the
set of CSPs that can be used for its deployment. Once it has all the information, it will create a list of
possible CSPs for each micro-service, and will assign some sort of score for each option.

Simulation

The entry for the combination process will be the information about different possibilities for the
deployment. The algorithm will perform a combination of all these possibilities, using the different
CSPs that can be used for each micro-service. These combinations will be sorted from the best of them
until the worse. An output with the best possible deployment will be created.

The best option for the deployment could be selected and confirmed by the developer, and sent (as
schema) to the controller.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 25 of 53

www.decide-h2020.eu

Figure 13. OPTIMUS external interfaces component diagram

3.3.1.2 Behavioural description

The behaviour of OPTIMUS tool, and the interchanged data among the different actors in this part of
the DECIDE workflow, is shown by the picture below:

Figure 14. OPTIMUS Sequence diagram

The messages among OPTIMUS and the rest of tools are:
1. App Data: The first information about the application is provided by the user, and requested

by ARCHITECT UI.
2. App Description Info: Once ARCHITECT has suggested the most suitable patterns, the related

information is stored as part of the Application Description and OPTIMUS will have access to
it.

3. Quantitative NFRs: The NFRs indicated by the user are an important information in order to
obtain a proper classification and the best theoretical deployment for the application.

4. Components info: The developer or user has already developed the application or has a
detailed design about it. OPTIMUS requires additional information about the micro-services
that the application is composed of.

5. Proposed classification: OPTIMUS IU presents the user the results of the application
classification.

6. Accepted Classification: The user, through OPTIMUS UI, accepts the classification made.
7. Trigger Deployment simulation: When ADAPT identifies a violation, a new redeployment

simulation is triggered by requesting OPTIMUS and sending it the information about the
violation

8. CS Discovery petition: OPTIMUS asks to ACSmI for a list of CSPs that fulfill the requirements
that the user and the classification process have established.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 26 of 53

www.decide-h2020.eu

9. CSPs sorted list: ACSmI sends OPTIMUS a list whose first element is the CSP that best fits the
non-functional requirements.

10. Ranked Deployment Schemas: After OPTIMUS has created the schemas for the deployment,
based on the information sent by ACSmI, it will present to the user as a ranking and he or she
will accept it, and therefore, the best one will be selected.

11. Accepted (first) deployment Schema: The schema selected by the user, the best schema
presented by OPTIMUS.

12. Best Deployment Schema: This output is the global result from OPTIMUS. It will be used by the
App controller tool for building the deployment script.

3.3.2 Application controller

In year 1 of the project the Application Controller will initially assist in managing the intelligence
regarding the current and historical deployment topology. The aim of this functionality is to mitigate
reusing deployment topologies that were faulty or inadequate in the past.

Further functionality as stated in Section ¡Error! No se encuentra el origen de la referencia. has been
realised in other various areas.

More detailed information about the implementation of the Application Controller can be found in
D3.10 [9]

3.3.2.1 Structural description

The following requirements have been elicited in the project for the Application Controller [1], these
are translated below in Figure 15 as functional components. The requirements can be summed up in
the following functionalities:

• Holding the intelligence of the different deployment configurations that the multi-cloud
application has had in its operation time. Storing these deployment configurations will allow
avoiding those configurations that resulted problematic in terms of security, performance or
legal awareness.

• Maintain an interface to OPTIMUS in order to receive the chosen deployment configuration to
be stored.

Figure 15. Component Diagram for Application Controller

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 27 of 53

www.decide-h2020.eu

The Application Controller component holds the intelligence for the different deployment
configurations that the multi-cloud application has had in its operation time. Storing these deployment
configurations will allow in the future avoiding those that resulted problematic in terms of fulfilling the
multi-cloud application’s fixed NFRs. The Application Controller component is in charge of this
functionality. It provides OPTIMUS and ADAPT an interface to read and write the current and historical
configurations. Furthermore, it stores the deployment history in the code repository where the
Application Description is also stored.

The deployment history will include meta-data regarding the deployment configuration such as Time
and date of deployment, the current status, information on the microservice, CSP data and information
regarding any SLA violations.

3.3.2.2 Behavioural description

Figure 16. Sequence Diagram for writing and reading deployment configuration

The sequences performed for reading and writing to the deployment history are as follows:

1. Once a successful deployment has taken place, OPTIMUS registers the current deployment
configuration with the Application Controller component. The information to be registered is
as described above and is specified in the meta-data model (see annex 1 for the meta-model
information).

2. The Application Controller component will update the existing file that holds the deployment
history in the code repository. In the case that the file does not exist, the Application Controller
component should create it.

3. If an SLA violation takes place, this is reported and the file is updated accordingly (same process
as prior step).

4. In the case of a new simulation phase, OPTIMUS shall read from the deployment configuration
history through the Application Controller component.

5. The Application Controller component supplies in turn OPTIMUS with the information needed
in order to evaluate which deployment topology is adequate.

3.3.3 ACSmI

3.3.3.1 Structural description

The Advanced Cloud Service (meta-) intermediator (ACSmI) will provide a cloud services store where
discovery, contracting, managing and monitoring different cloud services. ACSmI will provide the
means to assess continuous real-time verification of the cloud services non-functional properties

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 28 of 53

www.decide-h2020.eu

fulfilment and legislation compliance enforcement. ACSmI will also provide means for Cloud services
endorsement from different CPS.

These are the main functionalities envisioned:

• Endorse a cloud service into the ACSmI. ACSmI will allow to register services. This can be
performed by the CSP itself, by the multi-cloud application operator or by the ACSmI
Administrator. The registry of each service should cover the different defined terms for
modelling the CSPs and their services. This will allow the discovery of the services from the
service registry.

• Discover and benchmark services. OPTIMUS will indicate the NFR of the services that shall be
delivered to the ACSmI as input. ACSmI will discover, from the services stored in its registry,
the most appropriate ones for that set of NFRs. Then, from the set of discovered services,
ACSmI will prioritize these services in terms of NFRs fulfilment (including legal aspects) which
will be passed to OPTIMUS as a short list. The list will include, additionally, the degree of
fulfilment of the NFRs requested by the user.

• Contract services. This functionality will allow dealing with all the activities related to the
contracts within the ACSmI. Depending on the type of services and the CSP, ACSmI will manage
the contracts in two different ways: 1) ACSmI will facilitate contracting services directly by the
user to the provider and 2) ACSmI will manage the contract itself with the provider and the
user. In this last case, ACSmI will have mainly two types of contracts. The first one is the
contract with the CSP and the other one is with the user of the services intermediated by the
ACSmI.

• Manage CSPs. This functionality will allow the management of the different connectors to
facilitate the contracting of the services and to monitor them. This functionality will be in
charge of informing ADAPT with the required information for the deployment of the multi-
cloud application through the different contracted services.

• Monitor NFR CSPs and manage the violation alerts. This functionality will monitor the SLA
(NFRs) of the service offered by the CSPs to detect any violation of the SLAs. These metrics will
be recorded and passed to the ADAPT monitoring during the operation of the services. If a
violation is detected, an alert to the CSP will be sent.

• Monitor the use and bill the user. This functionality will allow calculating the costs generated
by the user for using ACSmI recommended cloud services, and to provide with the
corresponding invoice. To be able to generate the billing of the contracted services, the ACSmI
shall monitor the use of the different cloud services.

The high-level architecture of the ACSmI is presented next. The Figure 17 is an updated version of the
ACSmI architecture presented in D5.1 “ACSmI requirements and technical design” [3].

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 29 of 53

www.decide-h2020.eu

Figure 17. ACSmI High Level Architecture

There are five main components in charge of implementing the core functions of the ACSmI. Next, a
high-level description of the main components and their corresponding sub-components is presented.

Service Management

This component is in charge of executing and managing all the operations related to the services
offered by the ACSmI. Functions like cloud services endorsement, intelligent discovery, or service
operation are covered by this component and the corresponding sub-components. The sub-modules
included in Service Management are:

a. Service Registry: The service registry is in charge of registering all the information related to
the services offered by ACSmI. The type of information to be registered will be related to the
information about the NFRs.

b. Service Registry Governance: The Service Registry Governance is responsible for managing the
access and update to the service registry.

c. Service Discovery: This sub-component is in charge of managing the requests from the users
(OPTIMUS) to discover the services. It gathers and processes the NFRs from OPTIMUS when
discovering services in the ACSmI.

d. Services Benchmarking: This sub-component will be in charge of comparing the different NFRs
of the services and providing a short list of services based on the degree of the fulfilment of
the NFRs.

Legislation Compliance

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 30 of 53

www.decide-h2020.eu

The legislation compliance is in charge of assessing the compliance of the services with respect to the
different legislations (i.e. GDPR3 and Code of Conduct of CSPs). The sub-modules included in this
module are:

a. Legal aspects component is a database where all the legal-related information gathered from
the CSPs when endorsing a service is stored.

b. Legal assessment component, is responsible of checking if the information collected from the
CSPs accomplishes the requirements set by the applicable legislation, as requested by the user
when eliciting the NFR. This module is also in charge of ensuring that any changes in the
legislation will be propagated and all the services of the service registry will be reassessed.

c. Enforcement of SLAs component, is responsible of indicating what action is possible/ will be
taken when one or more SLAs are not respected.

d. Regulation of a service withdrawal is responsible of showing how contracts are terminated as
well as what terms regulate the termination of a service, e.g. data format on exit, data
portability, security measures etc.

Cloud service SLA monitoring

This module is in charge of the management of the monitoring of the services in the ACSmI. This
module is composed of the different sub-modules to perform the corresponding activities:

a. Manage violation. This sub module is in charge of managing and alert that a service in the
ACSmI is not fulfilling the SLA. Metering sub-component collects the different SLA terms that
will be monitored and selects the metric/parameters associated to each of the different terms.
This module will use the ‘Contracting’ interface to receive the SLA terms that need to be
monitored in a machine-readable way.

b. SLA Enforcement retrieves the values of these parameters, and stores them in the monitoring
repository.

c. SLA Assessment assesses the compliance of the SLA of the contracted services with respect to
the values retrieved for the parameters by the SLA enforcement sub-module (contracted
values vs. real values).

d. Manage Violation is a sub-module in charge of managing and triggering alerts when a service
contracted by ACSmI is not fulfilling its SLA.

e. Monitoring repository provides, assists, and automates the storage of metrics and values, and
the detected violations in its repository.

Business Model management

This core component is in charge of the execution and management of all the operations related to
Service Contracts in the ACSmI. It also performs all the activities related to the financial operations
with the different users of the ACSmI. The sub-modules included in this component are:

a. Contract Manager: It is in charge of the management of the core functions with respect to the
service contracts. It manages mainly two different types of contracts: 1) contracts between
the user and the ACSmI and 2) contracts between the CSPs (service providers) and the ACSmI.

b. Service Contract Registry: This sub-module stores the different contracts existing in the ACSmI.
c. Accounting: It is responsible for monitoring and calculating the total values in order to bill the

users for the services and to pay the CSPs for the services used.

3 General Data Protection Regulation

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 31 of 53

www.decide-h2020.eu

d. Billing: It generates the bills for the users.

Security management

This component is in charge of designing and developing the means to guarantee the secure operation
of the ACSmI. It includes functionalities such as identity propagation and federated authentication and
authorization, but not only, as this module deals with all the aspects related to the management of
security of the ACSmI, such as data and communication security as well as backup services. These
services shall secure all data generated and stored resulting from the activities performed by the ACSmI
itself. These shall be stored in the service registry, service contract registry and user registry
components of the ACSmI. The sub-modules included in this component are:

a. Roles Manager: It manages the activities related to the roles in the ACSmI (creation,
modification, assignment, deletion).

b. Policy Manager: It manages the activities related to the policies in the ACSmI (creation,
modification, assignment, deletion).

c. User Manager: It manages the activities related to the users in the ACSmI (creation,
modification, roles assignment, deletion).

d. User Registry: It stores all the information associated to the users of the ACSmI.
e. Authentication Manager: This sub-module performs the authentication of the users and

manages the access to the different actions/functions of the ACSmI for every user.
f. Communication Security: It provides secure communication means using the SSL transport

layer encryption between the client and the platform as well as between the platform and
cloud infrastructures.

g. Backup service: It is responsible to carry out incremental back-ups for allowing the recovery of
data of the ACSmI in case it is necessary.

h. Data encryption: It is responsible to encrypt the data of the ACSmI in order to maintain secured
these data in case of cyber-attacks.

A detailed description and design of each component is presented in the deliverable D5.1 “ACSmI
requirements and technical design” [3].

The following picture presents the interfaces that ACSmI will have with other DECIDE components.

Figure 18. ACSmI external interfaces

The internal interfaces between the ACSmI components are detailed in the D5.1 “ACSmI requirements
and technical design” [3].

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 32 of 53

www.decide-h2020.eu

3.3.3.2 Behavioural description

The ACSmI behaviour and the interchanged data among the different actors in this part of the DECIDE
workflow, is shown in Figure 19.

Figure 19. ACSmI Sequence Diagram

Four external components interact with ACSmI:

1. CSP UI. Each CSP or the ACSmI operator should introduce the information to maintain the
service registry updated. This component should interact with the service management
module. This component will also be informed if a non-compliance of the SLA occurred. The
CSP will have the possibility to ask for the withdrawal of a service from the service registry.

2. OPTIMUS will request the discovery of services that cover the requirements. Once these
services are discovered by the ACSmI, a message with the services discovered will be sent to
OPTIMUS. This list of services will be sorted according to the level of compliance with the
requirements.

3. Application Controller. The Application Controller will request ACSmI to activate those services
required for the application, and ACSmI will return the relevant information to deploy the
application components (or micro-services) on these services. Instead of the Application
Controller, the information to activate the services could be provided by the DECIDE DevOps
framework.

4. ADAPT. The interaction between ACSmI and ADAPT can occur from three different ways: 1)
ACSmI will provide ADAPT with all the information required to deploy the application, in
addition to the one provided by the application controller, 2) ACSmI will provide ADAPT
monitoring with the metrics of the contracted services to check if there is a violation of the

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 33 of 53

www.decide-h2020.eu

MCSLA and also to inform of a violation of SLA, and 3) ACSmI will inform ADAPT that a service
is not available in the service registry any more due to a withdrawal process.

3.4 Tools for multi-cloud applications continuous operation

3.4.1 ADAPT

3.4.1.1 Structural description

The main functionalities of ADAPT are the following.

• Deployment of the multi-cloud application. ADAPT generates and applies the scripts to deploy
the application’s components (containerized microservices) on one or multiple Cloud
providers, as indicated in the Application Description. The Application Description provides
detailed information about the microservices and their containers, about the related CSP
resources to be used, and about the MCSLA to be monitored for both the application and the
underlying cloud resources. A mandatory prerequisite is that a contract for the needed CSP
resources has already been signed.

• Monitoring of the application MCSLA. ADAPT also monitors the status of the deployed multi-
cloud based application and verifies that the non-functional requirements and the SLOs are
being fulfilled. If a violation of any of the NFRs or SLOs is detected, ADAPT monitoring
components will generate the proper actions depending on each situation and context: an
alert saying that the working conditions are not met will be sent to the operator, and the
“adaptation” process will be launched, through the violation handlers component.

• Adaptation of the multi-cloud application. If the application is of high technology risk, the
operator will have to confirm the following redeployment configuration proposed by
OPTIMUS; whereas, in case of low technology risk, the redeployment will be automatic.

The main components of ADAPT are shown in the following Figure along with their external interfaces.

Figure 20. ADAPT Component Diagram and Interfaces

Deployment Orchestrator

The Deployment Orchestrator is responsible for orchestrating the deployment lifecycle (deployment,
un-deployment, user confirmation, redeployment) for user applications and their components. This
component gets all its input information from the Application Description.

Monitoring Manager

The Monitoring Manager controls the monitoring functionality for the application, according to its
defined (Multi-Cloud) SLA. It identifies and raises any related violations, including those for the CSPs
where the application is deployed on. Monitoring information for the CSPs is collected from ACSmI.

Violations Handler

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 34 of 53

www.decide-h2020.eu

The Violations Handler will handle any violation raised by the Monitoring Manager, either regarding
the application MCSLA or the CSPs’ NFRs. Violation handling may lead both to alerting the operator
and to contacting OPTIMUS to trigger a new re-deployment simulation for the application, thus starting
a re-adaptation process.

More details on ADAPT architecture can be found in DECIDE deliverable D4.1 [10] .

3.4.1.2 Behavioural description

The interactions of ADAPT with other tools of the DECIDE framework are shown in the following Figure
21.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 35 of 53

www.decide-h2020.eu

Figure 21. Interactions of ADAPT with other DECIDE tools

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 36 of 53

www.decide-h2020.eu

The main steps indicated in the sequence diagram of Figure 21 are the following.

1. When ADAPT is invoked to deploy an application, it generates a representation of the
deployment configuration generated by OPTIMUS that can be understood by the used
deployment tool (e.g. Terraform).

2. ADAPT contacts ACSmI to start the cloud resources indicated in the Application Description
and then configures them.

3. ADAPT deploys and starts each application’s microservice and initiates the related monitoring.
4. While the application is running, ADAPT collects application metrics from the microservices

and from the underlying CSPs, through ACSmI, to identify any MCSLA violation.
5. As soon as a violation is identified, the operator is informed and a new redeployment

simulation is triggered by contacting OPTIMUS and sending it the information about the
violation.

6. When OPTIMUS finishes recalculating the new deployment configuration, ADAPT is invoked
again to redeploy the application.

7. If the application level of technology risk is defined as high, the operator must confirm the new
redeployment configuration before executing the actual redeployment.

8. The new configuration is deployed using the same steps as the initial deployment.
9. The previous configuration is un-deployed and the related resources are released through

ACSmI.

3.4.2 MCSLA Editor

The MCSLA Editor provides a tool for the authoring of an MCSLA to be used as a contract between the
user of the application and the application owner, i.e. developer. Furthermore, the MCSLA is designed
in a machine-readable format that describes means to monitor and measure the application’s NFRs.

3.4.2.1 Structural description

The requirements elicited for the MCSLA Editor in the project are described in D2.1 [1]. These are
translated into functionalities that reside in components as denoted in the component diagram (see
Figure 22). The main functionalities for MCSLA editor are:

• Provide means for the developer, to support him in the definition of the composite MCSLAs
(Multi Cloud Service Level Agreement) and the corresponding SLOs (Service Level Objectives)
of the application and the dependencies and needs on the underlying (combination of) cloud
services in a machine-readable format for the representation.

• Provide means to translate the resulting CSLA in machine readable format (based on
standards) as well as a human readable format (to be shared with the end-users, i.e.
customers).

• Provide a UI (through the DevOps framework) for creating/editing CSLAs/MCSLA

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 37 of 53

www.decide-h2020.eu

Figure 22. Component Diagram for MCSLA Editor

The MSCLA Editor is a two-tier architecture represented by the MCSLA Frontend and the backend
consisting of the MCSLAAggregator and the MCSLAManager.

MCSLA Frontend

The MCSLA Frontend is a user-facing component that enables the users to create, read, update and
delete MCLSAs in a visual and human readable manner. The frontend will be integrated into the
DevOps Framework. The Frontend communicates with the backend and uses defined interfaces for
accessing available SQOs and SLOs, aggregated values of SLAs as well as existing MCSLAs. Available
SLOs and SQOs are based on the ISO Standard 19086 [11] and cover terms that are application specific,
rather than just provider specific.

MCSLAManager

The MCSLA Manager is in charge of managing the MCSLA and holds its logical information model, it
communicates with the code repository in order to access the Application Description and receive the
ids of the cloud providers the multi-cloud application is deployed on.

The MCSLA Manager uses this information from the Application Description to access cloud provider
related information via the interfaces provided by ACSmI. This information is in turn used to identify
the SLAs (SLOs) that need to be aggregated and represented in the MCSLA.

Furthermore, the MCSLA Manager is in charge of storing a tagged version of the MCSLA in the code
Repository for ADAPT to access and be able to monitor the application. It does so via the Persistence
Manager.

MCSLAAggregator

The MCSLA Manager serves the MCSLA Aggregator with the SLA’s in order for it to accumulate and
aggregate the possible values for SLOs depending on the aggregation rules defined in the component.

For each deployment scenario detailed in the Application Description a specific aggregation rule is
specified and used to aggregate the values.

http://www.decide-h2020.eu/

D2.4 – Integrated architecture v1 Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 38 of 53

www.decide-h2020.eu

3.4.2.2 Behavioural description

Figure 23. Sequence Diagram for creating an MCSLA

The sequences for creating an MCSLA are as follows:

1. The developer starts the MCSLA Frontend (GUI); this process calls the MCSLA Manager in order
to populate the front end with the necessary values.

2. As long as the MCSLA Editor as a whole is integrated into the DevOps Framework, it is clear
which Application Description is applicable at this stage. The Application Description residing
in a repository will be accessed via the MCSLA Manager to retrieve the currently used
deployment topology, i.e. the CSP Ids.

3. With the CSP Ids, the MCSLA Manager contacts ACSmI in order to obtain the contracted SLAs.
4. The MCSLA Manager then contacts the MCSLA Aggregator to take the necessary measures to

aggregate the SLOs defined in each SLA.
5. Once this step is completed, the MCSLA Manager populates the frontend with the available

SLO/SQOs and their possible values.
6. The developer then uses the GUI to create the MCSLA, which is in turn saved by the MCSLA

Manager in the code Repository as well as registering it in the Application Description.

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 39 of 53

www.decide-h2020.eu

4 DECIDE tool suite deployment

4.1 DECIDE tools deployment options

The different DECIDE Key Results, tools and components, whose functionality and interdependencies
have been described in previous sections, constitute the comprehensive DECIDE tool-suite.

This section briefly classifies DECIDE component attending to the technological framework required
for its execution and deployment. According to this, DECIDE components are classified into:

• Web tools (SaaS),

 Are tools accessible through any compatible browser: In DECIDE some of the tools will be offered
as service, which are invoked for performing different functionalities. Internally these tools can be
deployed following the multi-cloud approach. It is envisioned that the following DECIDE Key
results, tools and components will be offered as Web Tools (SaaS): DevOps framework, ACSmI,
ADAPTand MCSLA Editor.

• Containerized tools.

This case is similar to the previous one, but in this case the web application can be installed locally.
The difference between this case and the previous one depends on the exploitation model to be
decided for each Key Result, tool or component. The following tools fit into this category: DevOps
framework, ACSmI, ADAPT, ARCHITECT and MCSLA Editor.

• Eclipse RCP Plugins.

Are accessible within any compatible standalone Eclipse IDE. These tools need to be installed
locally in each of the local IDEs. The tools envisioned to be deployed as Eclipse RCP plugins are:
NFR Editor, ARCHITECT, and OPTIMUS.

• Others:

App Controller will be delivered as a Java Library.

4.2 Information exchange between DECIDE tools

The mechanisms supporting interoperability and information exchange among the different

components of the tool-suite are envisioned as follows:

• Information exchange through the Application Description: The Application Description is the
main mechanism in DECIDE to share information between Key Results, tools and components
in DECIDE. The Application Description is a structured JSON file containing all the relevant
information about the current status of the relevant information of the multi-cloud
application, focusing on the information that is relevant for the different DECIDE Key Results,
tools and components. More information about the current version of the App Description is
included in the Annex 1.

• Information exchange through the DECIDE DevOps Framework: DECIDE DevOps Framework,
will also support interoperability among other DECIDE Key Results, tools and components.
On the one hand, DECIDE DevOps Framework contains means to store the multi-cloud
application itself (to be accessed by other DECIDE components) through the software
repository, as well as related elements (configuration files, needed libraries or the App
Description JSON file).

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 40 of 53

www.decide-h2020.eu

On the other hand, the DECIDE DevOps Framework will integrate the different UIs providing
the integrated framework for accessing all the DECIDE components, following the complete
and extended DevOps approach cycle defined.
Apart from integrating the DECIDE components from the interfaces point of view (UIs) it also
will provide the means for supporting the DECIDE workflow (the activities over the different
DECIDE tools) including the integration and management of the tools’ triggers at logical level,
through the access control and storage of the App Description and the management of the
triggers of the different tools depending on the workflow (design, pre-deployment, integration
and testing, operation and monitoring).

• Information exchange through direct API invocation. This approach is suitable when a direct
message exchange is required between two DECIDE components.

Interactions between components within the DECIDE tool-suite could be driven by:

• User interactions: When a user requests a DECIDE component. This is done through the UI of
the tool itself or the integrated UI (DevOps Framework).

• Task internal transactions: When a DECIDE tool requests information from another DECIDE
tool (one component invokes another component, or the invocation is done through the
DevOps framework).

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 41 of 53

www.decide-h2020.eu

5 Conclusions

This document provides a detailed description of the entire DECIDE global architecture, providing a
conceptual, functional and interoperable representation.

The combination of DECIDE Key Results and related tools and components supports the extended
DevOps approach proposed, from the design of the multi-cloud applications to the operation and
monitoring of their working conditions.

The document also provides a deeper analysis; both structural and behavioural of each DECIDE Key
Result identifying message exchange dependencies, dependencies through required and exposed
interfaces, and the timeline activities conducted by the tools. This in-depth analysis has enabled an
earlier identification of potential misalignments between the conceptualization and the technical
design of the different tools. These misalignments where identified and addressed during the
specification of this architecture, and solved and translated to the current conceptual and technical
design (by their respectively work package tasks). This architecture also enabled the agreement on the
work products produced and consumed by each tool, starting the discussions on the interoperability
requirements between the DECIDE Key results, tools and components.

Additionally, this document addressed the challenge of supporting the deployment of the DECIDE tool-
suite and the key results separately. Different possibilities are proposed here. The interoperability
between the DECIDE Key results and components has been analysed in the document too, deriving in
the incorporation of the App Description as one of the main mechanism for the DECIDE key results,
tools and components to exchange information between them.

The architecture, deployment possibilities and interoperability requirements and mechanisms
presented in this document cover the ideas, discussions and initial technical decisions taken by the
DECIDE partners during the first year of the project. This document will be updated in a subsequent
versions in M23, along with the advances in the implementation of the DECIDE Key Results, tools and
components.

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 42 of 53

www.decide-h2020.eu

References

[1] DECIDE consortium, "D2.1 Detailed requirements specification," 2017.

[2] DECIDE Consortium, "DECIDE Annex 1 - Description of Action," 2016.

[3] DECIDE Consortium, "D5.1 ACSmI requirements and technical design," 2017.

[4] DECIDE Consortium, «D6.1 Initial Use Case Requirements Capture,» 2017.

[5] DECIDE Consortium, «D6.2 Final Use Case Requirements Capture,» 2017.

[6] Weaveworks, “Sock Shop: A microservices demo application,” [Online]. Available:
https://microservices-demo.github.io/. [Accessed 25 10 2017].

[7] A. Sandor, “Sock Shop application internal design,” [Online]. Available:
https://github.com/microservices-demo/microservices-demo/blob/master/internal-
docs/design.md. [Accessed 21 11 2017].

[8] DECIDE consortium, «D3.4. Initial profiling and classification techniques,» 2017.

[9] Decide Consortium, «D3.10 Initial multi-cloud native application controller,» 2017.

[10] DECIDE Consortium, "D4.1 Initial DECIDE ADAPT Architecture," 2017.

[11] International Organization for Standardization, «ISO/IEC DIS 19086-2 Information technology --
Cloud computing -- Service level agreement (SLA) framework -- Part 2: Metric model,» ISO, 2017.

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 43 of 53

www.decide-h2020.eu

Annex 1: APP DESCRIPTION

This annex includes the current version of the App Description (M12)4. As explained in section 4, the
App Description is one of the main means in DECIDE for interoperability between the different
components.

This version of the App Description, resulting from Partners’ research and discussions, includes
relevant information for each of the DECIDE components, with a brief description for each field. Some
all the fields are still empty as the information needs to be further discussed. Please note that the
Application Description definition has evolved since the first data model shown in the DECIDE
deliverable D2.1 [1], and it is still evolving in parallel with the design and implementation iterations.

Table 1. Application Description model for deployment

Field
name

Nested
Elements

Nested
Elements

Type Multipli
city/
Default

Description Responsible
component

id

 String 1 Unique identifier for the
Application Description

DevOps
Framework

name

 String 1 Name of the application DevOps
Framework

descript
ion

 String 1 Textual description of
the application

highTec
hnologi
calRisk

 Boolean 1 Indicates if the
application has high
technological risk:
confirmation for
(re)deployment is
needed

version String 1 Indicates the version
number of the app
description "schema",
for compatibility
purposes

microse
rvices

 Array of

Objects
1..* List of microservices DevOps

Framework
/OPTIMUS

id String 1 Unique Identifier for the
microservice

DevOps
Framework
/OPTIMUS

repo String 1 Reference to location of
microservice repo

DevOps
Framework
/OPTIMUS

name String 1 Human readable name
for the microservice

Creation
Wizard/OPTIMU
S

program
mingLang
uage

 String 1 Type of programming
language used for
microservice (hint)

DevOps
Framework
d/OPTIMUS

4 This version corresponds to the 17th of November 2017, when this document was last updated. The information of the
App Description is evolving and will change as the technical discussions advances.

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 44 of 53

www.decide-h2020.eu

Field
name

Nested
Elements

Nested
Elements

Type Multipli
city/
Default

Description Responsible
component

container
_ref

 String 1 Id or URI of container in
which the microservice
is located for ADAPT to
be able to deploy it

DevOps
Framework

endpoint
s

 Array of
Objects
(URI)

1..* List of URI to access the
services and their
methods5

DevOps
Framework
/OPTIMUS

stateful Boolean 1 Is the microservice
stateful or stateless?

DevOps
Framework
/OPTIMUS

 Type The type of the
microservice, as the
result of the
classification process.

OPTIMUS

patterns Array of

Objects
0..* List of patterns applied

to the microservice
ARCHITECT

depende
ncies

 Array of
Strings

0..* List of microservice
names the current one
depends on

DevOps
Framework

nfrs Array of

Strings
1..* List of selected NFRs per

microservice
NFR Editor

 publicIP Boolean 1 True if the microservice
has a public IP address

OPTIMUS
Classification

 infrastruc
ture_requ
irements

 Object 1 Requirements for the
infrastructure hosting
the microservice

OPTIMUS
Classification

 disk_min String 1 OPTIMUS
Classification

 disk_max String 1 OPTIMUS
Classification

 RAM_min String 1 OPTIMUS
Classification

 RAM_ma
x

String 1 OPTIMUS
Classification

 Detachab
le_resour
ce

 list of elements that are
going to be used by the
microservice as for
example external DB
services

OPTIMUS
Classification

 resource Char Defined at this time
persistency and DB

OPTIMUS
Classification

 SQL Boolean OPTIMUS
Classification

 Specific_
DB

 When the type is DB,
the user can specify
which kind of DDBB will

OPTIMUS
Classification

5 Port numbers in each URI are those exposed by the microservice, the container can be configured to map them to a
different port number

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 45 of 53

www.decide-h2020.eu

Field
name

Nested
Elements

Nested
Elements

Type Multipli
city/
Default

Description Responsible
component

be needed (mongoDB,
etc…)

 Size For DB resource it will
be SMALL, MEDIUM or
LARGE

OPTIMUS
Classification

app_mc
sla

 Object 1 The MCSLA for the
application (see ¡Error! N
o se encuentra el
origen de la referencia.)

MCSLA Editor

App
Nfrs

 Array of

Strings

1..* List of selected NFRs for
the application, might
apply to individual NFRs

NFR Editor

Schema List of pairs
(microservice_id,
cloudservice_id)

OPTIMUS.simul
ation

virtual_
machin
es

 Array of
Objects

0..* Description of the VMs
that will host the
containers

 id 1 ACSmI/OPTIMU
S

 csp_nam
e

 String 1 Name of the CSP
providing this VM

ACSmI/OPTIMU
S

 csp_id String 1 Internal UUID for the
CSP providing this VM

ACSmI/OPTIMU
S

 RAM String 1 Amount of memory (in
GB)

ACSmI/OPTIMU
S

 cores Integer 1 Number of cores ACSmI/OPTIMU
S

 storage String 1 Amount of disk space
(in GB)

ACSmI/OPTIMU
S

 image String 1 Name of the VM image
(identifies also the OS
and its version)

ACSmI/OPTIMU
S

 ACSmIEn
dpoint

 String 1 Endpoint of the
Cloudbroker (ACSmI)
API, to which all the
cloud resource
provisioning requests
are sent

ACSmI

 ACSmIUs
ername

 String 1 Username for the
Cloudbroker API access

ACSmI

 ACSmIPas
sword

 String 1 Password for the
Cloudbroker API access

ACSmI

 vmSoftw
areId

 String 1 Id of the software
resource from the
ACSmI registry.
Represents the OS and
version of the VM (e.g.
“Ubuntu 16.04”)

ACSmI

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 46 of 53

www.decide-h2020.eu

Field
name

Nested
Elements

Nested
Elements

Type Multipli
city/
Default

Description Responsible
component

 vmResou
rceId

 String 1 The id of the ACSmI VM
resource, which
represents the
underlying CSP that will
perform the real
provisioning

ACSmI

 vmRegion
Id

 String 1 The id of the “Region”
where the VM will run,
taken from the ACSmI
registry (E.g.: Zrh, US
Standard, …)

ACSmI

 instanceT
ypeId

 String 1 The id of the
“instanceType” which
represents the
combination of
resources allocated to
the vm (e.g. “2 Total
cores, 2GB RAM)

ACSmI

 keyPairId String 1 The id of the keypairs
needed to access ACSmI
resources (associated to
the ACSmI user profile)

 openedP
orts

 String 0..1 The comma separated
list of ports to be open
on the VM

Developer

 consulJoi
nIp

 String 1 Address of the master
Consul (service registry)
node; if “self", it means
that this VM will act as
master

TBD: it will be
the address of a
node running
ADAPT

 dockerPri
vateRegis
tryIp

 String 0..1 IP of a Docker private
registry, which will host
custom container image
prepared by a
developer that are not
published to the public
Docker Hub repository

Developer

 dockerPri
vateRegis
tryPort

 Integer 0..1 Port of the private
Docker registry

Developer

 dockerHo
stNodeNa
me

 String 1 Name of the Docker
node (referenced by the
same field in each
container definition)

Developer /
OPTIMUS

contain
ers

 Array of
Objects

1..* Description of the
containers that will host
the microservices

 Id String 1 Id of the container

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 47 of 53

www.decide-h2020.eu

Field
name

Nested
Elements

Nested
Elements

Type Multipli
city/
Default

Description Responsible
component

 container
Name

 String 1 Name of the container Developer

 imageNa
me

 String 1 Name of the container
image

Developer

 imageTag String 1 Tag to identify the
container in the registry

Developer

 dockerPri
vateRegis
tryIp

 String 0..1 IP of a Docker private
registry, which will host
custom container image
prepared by a
developer that are not
published to the public
Docker Hub repository

Developer

 dockerPri
vateRegis
tryPort

 String 0..1 Port of the private
Docker registry

Developer

 dockerPri
vateRegis
tryUser

 String 0..1 Username to access the
private Docker registry

Developer

 dockerPri
vateRegis
tryPassw
ord

 String 0..1 Password to access the
private Docker registry

Developer

 hostname String 1 Hostname of the
container

Developer

 restart String 1 Attribute indicating the
restart policy for this
container (e.g.
“always”)

Developer

 command Array of
Strings

0..* Comma-separated list
of commands to be
passed to the container,
as for the “CMD”
Dockerfile specs

Developer

 entrypoin
t

 Array of
Strings

0..* Comma-separated list
of commands and
parameter to be passed
to the container, as for
the “ENTRYPOINT”
Dockerfile specs

Developer

 DockerHo
stNodeNa
me

 String 1 Name of the VM hosting
the container

OPTIMUS

 networks Array of
Strings

0..* This field will trigger the
creation of one or more
dedicated Docker
network(s) on the
container to allow two
containers to see each

Developer /
OPTIMUS

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 48 of 53

www.decide-h2020.eu

Field
name

Nested
Elements

Nested
Elements

Type Multipli
city/
Default

Description Responsible
component

other in case it does not
exist

 volumeM
apping

 Array of
Objects

0..* Mapping of volumes
from host paths to
container paths

Developer

 hostPath String 1 Path on the host Developer

 container
Path

String 1 Path on the container Developer

 environm
ent

 Array of
Strings

0..* List of comma-
separated KEY=VALUE
environment variables
to be defined before
starting the container,
as for the “ENV”
Dockerfile specs

Developer

 consulKv
Provider
NodeNa
me

 String 1 Name of the node
hosting the Consul Key-
Value provider

(TBD: it will be
the node
running ADAPT)

 addConsu
lService

 Boolean
(0|1)

0..1 Specify whether to
register the service to a
Consul service registry
(enables basic health-
check)

(TBD: it may be
enabled by
default)

 addConsu
lTraefikR
ules

 Boolean
(0|1)

 Specify whether to add
reverse proxy routing
rules to the Consul K/V
store (based on “Host:”
header)

Developer

 portMap
ping

 Array of
Objects

0..* List of ports to be
published by this
container

Developer

 hostPort String 1 Port to be exposed on
the host

Developer

 container
Port

String 1 Port exported by the
container

Developer

 endpoint
s

 Array of
Objects

0..* List of endpoints for this
container

Developer

 protocol String 1 Typically “http”, but can
be something else
according to URL syntax

Developer

 port Integer 1 The port to which the
endpoint is bound

Developer

 skipRule Boolean
(0|1)

0..1 Set to 1 to discard the
routing rule based on
hostname (“Host:”
header)

Developer

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 49 of 53

www.decide-h2020.eu

Field
name

Nested
Elements

Nested
Elements

Type Multipli
city/
Default

Description Responsible
component

 container
NameOve
rride

String 0..1 Overrides the standard
routing rule based on
hostname; hence, it
allows to consider a
different hostname for
this service

Developer

The following tables describe the Application Description model for monitoring with a brief description
for each field. Table 2 describes the nested elements for the field app_mcsla of the Application
Description. The MCSLA Editor is responsible for eliciting this information from the user.

Table 2. Application Description model for monitoring the application via its MCSLA (nested elements for
“app_mcsla”)

Element Name app_mcsla

Description General information about the MCSLA

attribute -or-
Element

Type
Multiplicity /
Default

Definition

Id String 1 Unique Identifier for the MCSLA

description String 1 This is MCSLA description line.

visibility String 1 public or private

validityPeriod Integer 1 The validity period of the MCSLA in
days

microservice_SLAs Microservice_SLAs 1..* The list of SLAs for each microservice

The following table describes the fields nested in the microservice_SLAs field of the MCSLA.

Table 3. Nested elements for microservice_SLAs

Element Name Microservice_SLAs

Description The general information about the SLAs for each microservice

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

Id String 1 Unique Identifier for the microservice_SLA

ms_id String 1
Unique Identifier of the microservice this
SLA belongs to

csp_id String 1
Unique Identifier of the CSP from which
the SLA comes from

visibility String 1 public or private

validityPeriod Integer 1

The validity period of the SLA in days,
should not be higher than that of the
MCSLA

microservice_SLO microservice_SLO 1..* List of microservice SLOs

microservice_SQO microservice_SQO 1..* List of microservice SQOs

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 50 of 53

www.decide-h2020.eu

The following table describes the fields nested in the microservice_SLO and microservice_SQO fields
of microservice_SLAs.

Table 4. Nested elements for microservice_SLO and microservice_SQO

Element Name microservice_SLO and microservice_SQO

Description The general information about the slo or sqo defined for a microservice

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

Id String 1
Unique Identifier for the
microservice_SLA

termName String 1 Name of the term to which it refers to

value Integer 1
Term value that should not be
violated based on calcualtion formula

unit String 1 Term unit

comparisonOperator String 1
Comparison operator for monitoring
the SLO

violationTriggerRule ViolationTriggerRule 1 The violation Trigger Rule

remedy Remedy 0..1

the compensation available to the
cloud service customer in the event
the cloud service provider fails to
meet a specified cloud service level
objective

metrics Metrics 1..*
The definition of how to measure the
SLO or SLA

violation_report String
0..1 Indicates where to report violations

for this application (optional)

The following table describes the fields nested in the violationTriggerRule field of microservice_SLO
and microservice_SQO.

Table 5. Nested elements for ViolationTriggerRule

Element Name ViolationTriggerRule

Description The general information about the violation trigger rule

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

interval string 1
Indicates the monitoring frequency for
each SLO

breaches_count Integer 1
The count of how many breaches have
taken place

The following table describes the fields nested in the remedy field of microservice_SLO and
microservice_SQO.

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 51 of 53

www.decide-h2020.eu

Table 6. Nested elements for Remedy

Element Name Remedy

Description
The general information about the compensation available to the cloud service
customer in the event the cloud service provider fails to meet a specified cloud
service level objective

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

type String 1
The type of remedy the cloud service
provider will be offering the cloud service
customer

value Integer 1
The value of the type of remedy offered by
the cloud service provider

Unit String 1 The unit for the value offered

validity Integer 1 The validity period for this remedy

The following table holds the fields (taken directly from ISO 19086-2 Metric Model [11]) that are nested
within the metrics field of microservice_SLO and microservice_SQO. The MCSLA Editor is responsible
for eliciting this information from the user.

Table 7. MCSLA Metric data model for monitoring

Element Name Metric

Description The general information about the metric

attribute -or- Element Type
Multiplicity /
Default

Definition

Descriptor String 0..1 a short description of the metric

Id String 1 a unique identifier for the metric within
a context

Source String 1 the individual or organization who
created the metric

Scale enumeratedList 1 classification of the type of
measurement result when using the
metric. The value of scale shall be
“nominal, ordinal, interval, or ratio”.
SLOs shall use either the “interval” or
“ratio” scale. SQOs shall use the
“nominal” or “ordinal” scales.

Note String 0..1 additional information about the metric
and how to use it.

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 52 of 53

www.decide-h2020.eu

category String 0..1 a grouping of metrics with similar
expressions, rules, and parameters

expression Expression 0..1 The expression of the calculation of the
Metric and supporting information. An
SLO metric shall have an expression
while an SQO may or may not have an
expression (e.g., specified using natural
language). It shall be written using the
ids to represent UnderlyingMetrics,
Parameters, and Rules.

parameters Parameter 0..* a Parameter is used to define a constant
(at runtime) needed in the expression of
an Metric. A Parameter may be used by
more than one Metric if it is defined
using a unique ID within the set of
metrics it is used in.

rules Rule 0..* a Rule is used to constrain a Metric and
indicate possible method(s) for
measurement.

underlyingMetrics Metric 0..* a metric element that is used within an
expression element to define a variable.
The Expression shall use the Underlying
Metric id to reference the Underlying
metric within the expression.

The following table describes the fields nested in the expression field of a Metric.

Table 8. Nested elements for Expression

Element Name Expression

Description The expression of the calculation of the Metric and supporting information

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

Id String 1
a unique identifier (within the context of
the metric) for the expression

expression String 1
the expression statement written using the
ids to represent UnderlyingMetrics,
parameters, and rules.

expressionLanguage String 1
the language used to express the metric (i.e.
ISO80000)

note String 0..1
additional information about the
expression

unit String 0..1

http://www.decide-h2020.eu/

D2.4 – DECIDE integrated architecture Version 1.0 – Final. Date: 15.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 53 of 53

www.decide-h2020.eu

required
when scale
is ratio or
interval

real scalar quantity, defined and adopted by
convention, with which any other quantity
of the same kind can be compared to
express the ratio of the two quantities as a
number.

subExpression Expression 0..*

an associated element of type element that
is used within the expression to define a
variable. The Expression shall use the
SubExpression id to reference the
SubExpression within the expression.

The following table describes the fields nested in the parameters field of a Metric.

Table 9. Nested elements for Parameter

Element Name Parameter

Description
A Parameter is used to define a constant (at runtime) needed in the expression
of a Metric. A Parameter may be used by more than one Metric if it is defined
using a unique ID within the set of metrics it is used in.

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

id String 1 the unique identifier of the parameter

parameterStatement String 1 the statement or value of the parameter

unit String 1 the unit of the parameter

note String 0..1
additional information about the
parameter

The following table describes the fields nested in the rules field of a Metric.

Table 10. Nested elements for Rule

Element Name Rule

Description

A Rule is used to constrain a Metric and indicate possible method(s) for
measurement. For instance, an “AvailabilityDuringBusinessHour” Metric could be
defined with a scope that constrains some piece of a generic “Availability” Metric
element that limits the measurement period to defined business hours. A Rule
describes constraints on the metric expression. A constraint can be expressed in
many different formats (e.g. plain English, ISO 80000, SBVR)

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

Id String 1 the unique identifier for the rule

ruleStatement String 1 a constraint on the metric

ruleLanguage String 1
the language used to express the rule in the
ruleStatement

Note String 0..1 additional information about the rule

http://www.decide-h2020.eu/

	Table of Contents
	List of Figures
	List of Tables
	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Overview of the DECIDE integrated conceptual architecture
	2.1 Multi-Cloud classification
	2.2 DECIDE Tools for multi-cloud applications design and development
	2.2.1 NFR editor
	2.2.2 ARCHITECT

	2.3 DECIDE Tools for multi-cloud applications continuous integration and continuous testing
	2.3.1 DevOps framework

	2.4 DECIDE Tools for multi-cloud applications (pre) deployment
	2.4.1 OPTIMUS
	2.4.2 App Controller
	2.4.3 ACSmI

	2.5 Tools for multi-cloud applications continuous deployment and operation
	2.5.1 ADAPT deployment and monitoring
	2.5.2 MCSLA editor

	2.6 Sample multi-cloud application in DECIDE: Sock shop application

	3 Detailed DECIDE integrated architecture
	3.1 Tools for multi-cloud applications design and development
	3.1.1 NFR editor
	3.1.1.1 Structural description
	3.1.1.2 Behavioural description

	3.1.2 ARCHITECT
	3.1.2.1 Structural description
	3.1.2.2 Behavioural description

	3.2 Tools for multi-cloud applications continuous integration and testing
	3.2.1 DevOps framework
	3.2.1.1 Structural description
	3.2.1.2 Behavioural description

	3.3 Tools for multi-cloud applications (pre) deployment
	3.3.1 OPTIMUS
	3.3.1.1 Structural description
	3.3.1.2 Behavioural description

	3.3.2 Application controller
	3.3.2.1 Structural description
	3.3.2.2 Behavioural description

	3.3.3 ACSmI
	3.3.3.1 Structural description
	3.3.3.2 Behavioural description

	3.4 Tools for multi-cloud applications continuous operation
	3.4.1 ADAPT
	3.4.1.1 Structural description
	3.4.1.2 Behavioural description

	3.4.2 MCSLA Editor
	3.4.2.1 Structural description
	3.4.2.2 Behavioural description

	4 DECIDE tool suite deployment
	4.1 DECIDE tools deployment options
	4.2 Information exchange between DECIDE tools

	5 Conclusions
	References
	Annex 1: APP DESCRIPTION

