
D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 1 of 52

www.decide-h2020.eu

Deliverable D2.7

Intermediate DECIDE DevOps Framework Integration

Editor(s): José Manuel López
Javier Gavilanes Ruano

Responsible Partner: Experis IT

Status-Version: Final – v1.0

Date: 28/02/2019

Distribution level (CO, PU): PU

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 2 of 52

www.decide-h2020.eu

Project Number: GA 726755

Project Title: DECIDE

Title of Deliverable:
D2.7 Intermediate DECIDE DevOps Framework
Integration

Due Date of Delivery to the EC: 28/02/2019

Workpackage responsible for the
Deliverable:

WP2 – DECIDE requirements and DECIDE solution
integration

Editor(s): Experis IT

Contributor(s): Experis IT

Reviewer(s): Leire Orue-Echevarria (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5, WP6

Abstract: This deliverable will provide an intermediate version of the
integrated DECIDE DevOps Framework. This intermediate
version will augment the initial version functionalities
taking into consideration the feedback coming for the use
cases.

Keyword List: DevOps framework, integration, multi-cloud, microservice.

Licensing information: This component is offered under the MIT license.

The document itself is delivered as a description for the
European Commission about the released software, so it is
not public.

Disclaimer This deliverable reflects only the author’s views and views
and the Commission is not responsible for any use that may
be made of the information contained therein

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 3 of 52

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

V0.1 05.02.2019 First draft version Experis IT

V0.2 20.02.2019 Sent to internal review TECNALIA

V0.3 25.02.2019 Modified after internal review Experis IT

V1.0 28.02.2019 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 4 of 52

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 5

List of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable .. 8

1.2 Document structure ... 8

2 DECIDE Development and Integration .. 9

2.1 Staging integration environment: .. 9

2.2 Production integration environment ... 15

2.3 Code structure ... 16

3 DECIDE UI .. 16

4 DECIDE Orchestration .. 18

5 Secrets sharing .. 21

6 Implementation ... 22

6.1 Functional description ... 22

6.1.1 Fitting into overall DECIDE Architecture .. 25

6.2 Technical description ... 26

6.2.1 Prototype architecture .. 26

6.2.2 Components description ... 27

6.2.2.1 User and application management ... 27

6.2.2.2 Vault .. 27

7 Delivery and usage .. 30

7.1 Package information .. 30

7.1.1 DevOps Framework Client ... 30

7.1.2 DevOps Framework Server .. 33

7.2 Installation instructions ... 33

7.3 User Manual ... 34

7.4 Licensing information .. 35

7.5 Download ... 35

8 Conclusions .. 36

References ... 37

Annex A. Code snippets ... 38

Guards ... 38

Login .. 38

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 5 of 52

www.decide-h2020.eu

NFR Editor HTML ... 39

Services (decide.gateway.service.ts) ... 40

DevOps Framework Server (appManagerController) ... 47

List of Figures

FIGURE 1. DEVELOPMENT PROCESS IN DECIDE .. 9
FIGURE 2. GIT WHERE THE TOOLS’ CODE IS STORED ... 10
FIGURE 3. CODE STRUCTURE WITHIN GIT ... 10
FIGURE 4. STAGING VARIABLES IN THE INTEGRATION ENVIRONMENT .. 11
FIGURE 5. OVERVIEW OF THE BUILD SETUP ... 12
FIGURE 6. OVERVIEW OF THE TASKS NEEDED TO START MICROSERVICES .. 13
FIGURE 7. RELEASE CREATION MENU ... 14
FIGURE 8. REDEPLOYMENT MENU .. 14
FIGURE 9. OVERVIEW OF STEPS REQUIRED FOR THE DEPLOYMENT .. 15
FIGURE 10. SAMPLE OF A REDEPLOYMENT LOG ... 15
FIGURE 11. GENERAL EDITOR. MICROSERVICES CREATION .. 16
FIGURE 12. GENERAL EDITOR. NFRS DEFINITION .. 17
FIGURE 13. ACSMI DISCOVERY’S IFRAME IN THE DEVOPS FRAMEWORK ... 17
FIGURE 14. DEVOPS FRAMEWORK DASHBOARD. OPERATION SECTION ... 18
FIGURE 15. DECIDE STATE MACHINE DIAGRAM ... 19
FIGURE 16. VAULT BASIC WORKFLOW [2] .. 21
FIGURE 17. DEVOPS FRAMEWORK WITHIN DECIDE ... 25
FIGURE 18. DEVOPS FRAMEWORK PROTOTYPE’S ARCHITECTURE DIAGRAM ... 26
FIGURE 19. SCHEMA OF THE DATABASE FOR USER MANAGEMENT .. 27
FIGURE 20. VAULT IN DECIDE .. 28
FIGURE 21. DEVOPS FRAMEWORK CLIENT’S FILE STRUCTURE .. 30
FIGURE 22. HTML CODE OF ACSMI CONTRACTING MODULE .. 31
FIGURE 23. TS CODE OF ACSMI DISCOVERY MODULE .. 31
FIGURE 24. STRUCTURE OF THE “COMPONENTS” MODULE ... 31
FIGURE 25. STRUCTURE OF THE “MODELS” MODULE ... 32
FIGURE 26. CODE SNIPPET OF THE “MODELS” MODULE .. 32
FIGURE 27. STRUCTURE OF THE “SERVICES” MODULE .. 33
FIGURE 28. DEVOPS FRAMEWORK SERVER’S FILE STRUCTURE ... 33

List of Tables

TABLE 1. RELATIONSHIP BETWEEN STATES AND ENABLED TOOLS .. 19
TABLE 2. REQUIREMENTS COVERED BY THE M27 PROTOTYPE ... 23
TABLE 3. ENDPOINTS OF DECIDE COMPONENTS .. 34

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 6 of 52

www.decide-h2020.eu

Terms and abbreviations

ACSmI Advanced Cloud Service (meta-) Intermediator

ADAPT DO ADAPT Deployment Orchestrator

ADAPT MM ADAPT Monitoring Manager

API Application Programming Interface

EC European Commission

GUI Graphical User Interface

HTML Hypertext Mark-up Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

KR Key Result

MCSLA Multi-cloud Service Level Agreement

MIT Massachusetts Institute of Technology

MTBF Mean Time Between Failures

MVC Model-view-controller

NFP Non-functional Properties

NFR Non-functional Requirement

RAM Random Access Memory

REST Representational State Transfer

UI User Interface

URL Uniform Resource Locator

WP Work Package

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 7 of 52

www.decide-h2020.eu

Executive Summary

This document contains the technical description of the DevOps Framework. The second release of
this component offers some improvements at a graphical level, it integrates all the DECIDE tools, and
provides new functionalities compared to the first release, such as infrastructure to share confidential
information amongst tools with Vault.

Since the first release, an integration environment has been set up to provide access to partners to the
DECIDE Platform. This environment is configured as a two-stages environment and is described within
the document.

The graphical interface has also been improved and serves as an entry point to access the UIs of all
components.

The DevOps Framework also handles the DECIDE workflow. A first approach to implement this
functionality has been tackled in this document, with the creation of a state machine to control the
contents of the application description.

Lastly, the technical implementation of this component can be found at the end of the document.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 8 of 52

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

This deliverable explains the architecture of the second DECIDE DevOps framework prototype. It
introduces the new implemented functionalities for the M27 prototype and includes a technical
description of this component.

Furthermore, the deliverable gives an overview of the integration environment that has been set up
in AIMES premises, to test the integration of the DECIDE KRs and validate it in the use cases.

1.2 Document structure

The document is structured in six (6) main sections:

• Section 2 explains the DECIDE integration environment.

• Section 3 details the DevOps Framework UI.

• Section 4 describes the orchestration strategy, based on a state machine.

• Section 5 provides detail of the deployment of Vault, a component to share secrets amongst
the DECIDE tools.

• Section 6 contains the technical description of the DevOps framework and,

• Section 7 provides delivery and usage information

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 9 of 52

www.decide-h2020.eu

2 DECIDE Development and Integration

This section presents the process followed in DECIDE that has been set up for development, testing
and integration of its tools and KRs. It builds upon and updates the integration strategy presented in
Deliverable D2.3 Integration and validation strategy [1], with the actual implemented methodology,
tools and approach.

The development process in DECIDE is set up in three stages, as the following figure shows:

Figure 1. Development process in DECIDE

• During the development stage, the different tools are developed by the responsible partners,
locally, and tested in isolation before moving to the staging stage.

• In the staging stage, all DECIDE KRs are deployed in a common environment, where integration
tests can take place. This environment is meant to check the correct integration of the
components, and said components are redeployed whenever the developer changes the code.

• Lastly, in the production stage, only stable versions of the tools are deployed, after making
sure that they are working as intended. This environment is manually rebuilt every 15 days.

As it has been mentioned, the development is performed locally by the partners, but the staging and
production stages are integration environments, set up in AIMES premises, to which all partners have
access. These environments will be described in the following section.

2.1 Staging integration environment:

The integration environment is located in an AIMES machine, to which a public IP has been assigned.
This environment is meant to test recent changes to the tools and the integration of the different
components. As such, whenever a change is committed to a tool, said tool is automatically redeployed.

The integration environment is composed of the following tools:

• Git: there exists a remote repository for the DECIDE project where the different code versions
of each of the developed services are stored. The git repository is hosted at TECNALIA.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 10 of 52

www.decide-h2020.eu

Figure 2. Git where the tools’ code is stored

Figure 3. Code structure within Git

• Azure Devops: this tool allows to automate processes within the lifecycle of applications, such
as updating the code or provisioning a new environment in a simple way. It covers the
commonly defined as continuous integration and continuous delivery in the DevOps
philosophy. The steps to follow to automate the services are:

o Define variables: In the “Pipelines - Library” section, the staging variables used by the
DECIDE microservices are defined:

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 11 of 52

www.decide-h2020.eu

Figure 4. Staging variables in the integration environment

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 12 of 52

www.decide-h2020.eu

o Make a build: for the first deployment, it is necessary to generate a new build and
define all required tasks:

Figure 5. Overview of the build setup

o Build Task: each of the necessary tasks to start a micro service (get Git sources, Maven
compile, build images…):

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 13 of 52

www.decide-h2020.eu

Figure 6. Overview of the tasks needed to start microservices

o Make a release: When a build is running properly, it is time to create a new release
connected to the build:

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 14 of 52

www.decide-h2020.eu

Figure 7. Release creation menu

o Redeploy: Normally this operation is launched automatically when the code changes,
but there exists the option to force the redeployment manually:

Figure 8. Redeployment menu

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 15 of 52

www.decide-h2020.eu

Figure 9. Overview of steps required for the deployment

o Logs: all redeployment operations generate logs. These logs are useful to know if the
microservices can start or return an error:

Figure 10. Sample of a redeployment log

2.2 Production integration environment

As stated in the introduction of the section, there is a second integration environment in place, where
only stable versions of the tools are deployed. The goal of this environment is to have a more static
version of DECIDE, for high-level testing and for use-cases testing.

This production environment is set up exactly the same way as the staging one, in a second AIMES
machine, with the only difference that the automatic redeployment is disabled. It has been agreed
that a new deployment will take place every 15 days, to give time to new tool versions to be polished
in the staging environment before moving onto production.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 16 of 52

www.decide-h2020.eu

2.3 Code structure

To setup the integration environment described above, the code structure within Git must follow a
common approach, distinguishing between stable versions of the tools and versions in development.
Thus, the following structure has been agreed upon all partners:

Two different branches will be created:

• Master branch: this branch will host the most recent version of the tools, where new
functionalities will be implemented. The code on the master branch will be deployed in the
staging environment whenever a new version is released.

• Release branch: this branch will hold only stable versions of the tools. It will be updated with
a new version once it has been proved that said version is bug-free and working properly. The
code on the release branch will be deployed in the production environment every 15 days.

Besides, the different tool releases in the release branch will be tagged to give the possibility of rolling
back to a previous version, in case something goes wrong with the tool.

3 DECIDE UI

The DECIDE Framework provides a graphical user interface to provide access to the different Key
Results.

On one hand, the framework includes a “General Editor” that allows a user to create a DECIDE
application, that is, introduce the most relevant data about the application (name, location of the code,
number of microservices, NFRs, …) which will later be written into the Application Description. It also
provides the option of importing a previously created Application Description. The current version of
the DevOps framework is adapted to the latest NFR format. The images below show the General Editor:

Figure 11. General editor. Microservices creation

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 17 of 52

www.decide-h2020.eu

Figure 12. General editor. NFRs definition

On the other hand, it integrates the graphical interfaces of the Key Results, so that they can be accessed
from one point. The preferred means of integration is through the use of an iframe, but for some of
the tools, the DevOps Framework construct their UI, with an API-based approach. More information
about the integration of tools at a GUI level can be found on deliverable D2.2 [2]. The following figure
shows an example of an iframe integrated in the DevOps Framework (ACSmI Discovery’s UI):

Figure 13. ACSmI Discovery’s iframe in the DevOps Framework

Lastly, the DevOps Framework provides a dashboard to give an overview of the status of the
application, regarding code development, patterns or deployment situation. The following image
shows the detail of the “Operation” part of the Dashboard:

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 18 of 52

www.decide-h2020.eu

Figure 14. DevOps Framework Dashboard. Operation section

4 DECIDE Orchestration

There are a lot of tools that intervene in DECIDE and that have to be called at the appropriate moment.
Furthermore, these tools need that certain information about the project being developed has been
introduced in the application description in order to work properly.

Because of this reason, a component that takes care of these issues is required. This component has
to invoke the correct tool at the right time and should also enable or disable access to the tools,
depending on the information already included in the application description. It is the DevOps
Framework the tool that handles this, since it is the entry point to DECIDE and the most centralized
component.

Due to the complexity of the DECIDE workflow and sub-workflows, this is not a trivial task. As a first
step towards solving it, a state machine has been developed, to understand and clarify the information
needs of the tools and the dependencies between the application description variables.

The state machine described below aims at giving an overview of what variables in the Application
Description1 are needed for each tool to be able to work. States represent tools that are ready to be
used and transitions represent the introduction of a set of variables in the Application Description.

This state machine is a first version that will be expanded and implemented for the final release:

1 The Application Description is the procedure that DECIDE has selected to make all tools interoperable

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 19 of 52

www.decide-h2020.eu

Figure 15. DECIDE State machine diagram

As stated above, the different states of the diagram represent the tools that are “enabled”, that is,
they have all the necessary information to work. For simplicity, an enabled tool indicates that all
“previous” tools (tools that have intervened before) are also enabled. For example, the state
“OPTIMUS Simulation” represents that the OPTIMUS Simulation tools is enabled, but also the Code
development and build, ARCHITECT and DevOps Framework tools are enabled in that state. The
following table shows the relationship between the states and the tools enabled in each state:

Table 1. Relationship between states and enabled tools

State Enabled tools

DevOps Framework DevOps Framework

ARCHITECT DevOps Framework
ARCHITECT

Code development and build DevOps Framework
ARCHITECT
(Eclipse)

OPTIMUS Classification DevOps Framework
ARCHITECT
OPTIMUS Classification

OPTIMUS Simulation DevOps Framework
ARCHITECT
OPTIMUS Classification
OPTIMUS Simulation

MSCLA DevOps Framework
ARCHITECT
OPTIMUS Classification
OPTIMUS Simulation

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 20 of 52

www.decide-h2020.eu

State Enabled tools

MCSLA

ACSmI Contracting DevOps Framework
ARCHITECT
OPTIMUS Classification
OPTIMUS Simulation
MCSLA
ACSmI Contracting

ADAPT DO DevOps Framework
ARCHITECT
OPTIMUS Classification
OPTIMUS Simulation
MCSLA
ACSmI Contracting
ADAPT DO

Monitoring DevOps Framework
ARCHITECT
OPTIMUS
MCSLA
ACSmI Contracting
ADAPT DO
Monitoring (ADAPT MM and ACSmI
Monitoring)

The “Code development and build” state represents that all the basic metadata about the project
(name, description, NFRs) and patterns are already available, hence allowing the development team
to start developing. The following tools, however, do not require that the code or the images are
available, except ADAPT DO.

The “Monitoring” state represents that both ADAPT monitoring and ACSmI monitoring are enabled.

As for transitions, they reference the group of variables in the Application Description that allow a tool
to work properly, i.e. the minimum amount of information the tool needs. Once that information has
been introduced in the Application Description, the state (tool) is enabled. Below, these transitions are
explained:

• basicInfo: basic project’s information, introduced from the Wizard (name, Git repository…)

• microServices: information regarding the microservices

• NFRs: selected NFRs

• patterns: patterns selected by the user from the list provided by ARCHITECT

• images: images of the developed microservices are available

• classification: information generated by OPTIMUS classification and required by OPTIMUS
Simulation

• schema: schema proposed by OPTIMUS and selected by the user

• MCSLA: MCSLA created

• contracts: contracts are created

• runtimeInfo: info that ADAPT needs for deployment

• urls: URLs generated by ADAPT where the microservices are deployed

• violation: a violation is received

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 21 of 52

www.decide-h2020.eu

5 Secrets sharing

The DevOps framework must provide the necessary infrastructure for tools to be able to share sensible
information amongst themselves. For this task, it has been opted to use Vault.

Vault is a tool, developed by HashiCorp, for securely storing and accessing sensitive information, or
secrets, such as API keys, passwords or certificates.

The main features of Vault are [1]:

• Secure Secret Storage: Vault can store arbitrary key/value secrets. These secrets are encrypted
prior to writing them to persistent storage, so gaining access to the raw storage is not enough
to access the secrets.

• Dynamic Secrets: Vault can generate secrets on-demand for some systems, such as AWS or
SQL databases. After creating these dynamic secrets, Vault will also automatically revoke them
after the lease is up.

• Data Encryption: Vault can encrypt and decrypt data without storing it. This allows to define
encryption parameters and to store encrypted data in a location without having to design
specific encryption methods.

• Leasing and Renewal: All secrets in Vault have a lease associated with them. At the end of the
lease, Vault will automatically revoke that secret. Clients are able to renew leases via built-in
renew APIs.

• Revocation: Vault can revoke not only single secrets, but a tree of secrets, for example all
secrets read by a specific user, or all secrets of a particular type.

VAULT IN DECIDE

The basic working process of Vault in DECIDE is depicted in the figure below:

Figure 16. Vault basic workflow [2]

1. An administrator is in charge of creating the policies that define what secrets can be accessed
by each component.

2. A DevOps operator (this role can coincide with the administrator role) will store the secrets
inside Vault.

3. Tokens, which are associated to a certain policy, thus controlling what data they can access,
are created by the administrator and distributed to the tools that will access the vault.

4. Whenever a tool or component needs a secret, it will request it to Vault, obtaining access to it
by means of the provided token.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 22 of 52

www.decide-h2020.eu

6 Implementation

6.1 Functional description

The DECIDE DevOps Framework is the platform from which the different Key Results will be accessed.
Its main purpose is to offer an intuitive interface to the user where they can set up a specific multi-
cloud native application and consume any of the other tools integrated in the system. The framework
provides an entry point to DECIDE and handles the interconnection between all the elements involved,
providing a global overview about the state of the application to the end user. Furthermore, the
DevOps Framework takes care of the user and application management and provides the necessary
infrastructure to safely store and share sensitive information.

Functionalities:

The main functionalities of the DECIDE DevOps Framework can be summarized as:

1. Entry point. The framework must provide centralized access to the different tools and KRs. It
will also provide the necessary facilities for user and application management.

2. KR integration. The framework must transparently unify the graphical interfaces of the Key
Results. Besides, it will allow for the creation and edition of the Application Description, a file
that contains the parameters to configure the tools and serves as an integration point for these
tools. This file has been defined in deliverable D2.1 [3] and updated in D2.5 [5].

3. Workflow orchestration. The DevOps framework will be able to launch the different tools and
KRs and make sure that the DECIDE workflow is followed as intended.

4. Application configuration. The DevOps framework will allow users to introduce the application
information that is needed for the tools to function properly.

5. User and application management: The DevOps framework will manage user access to the
platform and the application(s) that each user is working on.

6. Secrets management: The framework will provide infrastructure to share and store secrets
(credentials, tokens, certificates) in a secure manner through the use of Vault [1].

DECIDE DevOps framework will follow an incremental strategy, according to which different
prototypes of the framework are periodically released (in months 15, 27 and 33). The current M27
prototype improves upon the M15 version and has the following coverage of the expected
functionalities:

1. Entry point. Covered. This prototype provides a platform with centralized access to all DECIDE
tools.

2. KR integration. Covered. The prototype gives access to all DECIDE KRs and enables
communication amongst them.

3. Workflow orchestration. Partially covered. The DevOps framework provides the means to
launch the corresponding tool, and automatically triggers some components. Full workflow
orchestration will be supported on the final version.

4. Application configuration. Covered. The prototype lets users create and configure
applications, by letting them introduce all the necessary information about them either from
the General editor or from the corresponding tab of the tool.

5. User and application management. Covered. The prototype provides infrastructure to manage
user access and the application(s) that each user is working on.

6. Secrets management. Covered. The prototype provides access to Vault, a component that
safely stores sensitive information and enables its secure sharing.

Requirements:

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 23 of 52

www.decide-h2020.eu

The global requirements for the DECIDE DevOps Framework have been analyzed, reviewed and
gathered in D2.1 [3] and revised in D2.2 [4]. The following table provides the status of the
implementation of these requirements in the M27 prototype. The table represents an update on the
requirements implemented for the M15 release and documented in section 2.1 of deliverable D2.6 [7].

Table 2. Requirements covered by the M27 prototype

Req. ID Req. Description
Requirement coverage by the
prototype

KR1-REQ1
The system must provide the user
with an entry point to DECIDE.

The prototype provides access to a
platform from which the different tools
can be utilized.

KR1-REQ2
The system must unify transparently
the UIs from the different KRs.

The prototype provides access to the
tools, whose UI will be embedded in
the platform, following a common set
of guidelines.

KR1-REQ3
The system must provide a generic
DECIDE UI.

The prototype includes a dashboard
that unifies information from some of
the tools to give an overview of the
application status

KR1-REQ4
The system must receive
ARCHITECT's patterns.

Although the prototype does not
receive patterns as such due to design
reasons, it provides access to the
patterns repository and allows a user
to select what patterns will be applied
to the application.

KR1-REQ5
The developer must have access to a
development environment with the
received patterns.

Requirement rejected. ARCHITECT’s
patterns do not include code snippets
that can be received by a development
environment.

KR1-REQ6
The developer must have access to a
development environment with
preloaded DECIDE configurations.

The prototype allows its users to
import Application Description files,
which would load a certain DECIDE
configuration.

KR1-REQ7
The system must allow the developer
to submit their code.

This functionality is provided by
Eclipse.

KR1-REQ8
The system must be able to version
the code submitted by the developer.

This functionality is provided by Git.

KR1-REQ9
The system must be able to resolve
the dependencies of the submitted
code.

This functionality is provided by
Eclipse/Git.

KR1-REQ10
The system must compile the code
without errors.

This functionality is provided by
Jenkins.

KR1-REQ11
The system must receive the testing
activities that have to be performed
on the code.

This functionality is provided by
SonarQube.

KR1-REQ12
The system must be able to perform
the received testing activities.

 This functionality is provided by
SonarQube.

KR1-REQ13
The system must present the results
from the testing activities.

 This functionality is provided by
SonarQube.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 24 of 52

www.decide-h2020.eu

Req. ID Req. Description
Requirement coverage by the
prototype

KR1-REQ14
The system must guarantee the
continuity of the code within
DECIDE's workflow.

The code resides in a Git repository
that is accessible by all tools.

KR1-REQ15
The system must make the code
available for DECIDE.

The prototype will provide an option to
indicate where the code is located,
making it available for all tools.

KR1-REQ16
The system must guarantee the
fulfilment of DECIDE's patterns by the
developer.

Requirement rejected.

KR1-REQ17
DECIDE DevOps framework must
provide support for NFR gathering.

The prototype provides a General
Editor that will let the user specify the
application’s NFRs.

KR1-REQ18

The system must support developers
establishing qualitative NFP that the
application must comply with (i.e.
security, location, financial, low/high
technological risk).

The prototype provides a General
Editor that will let the user specify
application’s NFPs.

KR1-REQ19

The system must support developers
establishing quantitative NFP that the
application must comply with (i.e.
MTBF, availability, response time, lag,
cost, throughout)).

The prototype provides a wizard that
will let the user specify application’s
NFPs related to availability and cost.

KR1-REQ20
The system must include a (MC)SLA
editor.

The MCSLA editor is integrated in the
prototype.

KR1-REQ21
The system must include an
Application Controller.

The prototype utilizes the Application
Controller to update the Application
Description file.

DEVOPS-REQ1
DECIDE framework must facilitate
small and frequent updates of the
code.

The prototype provides continuous
integration, which facilitates small and
frequent updates of the code.

DEVOPS-REQ2

DECIDE framework must support the
automatic deployment of the
infrastructure required for the
development.

Requirement rejected. Development is
performed locally, there is no need to
deploy a development environment.

DEVOPS-REQ4
DECIDE framework must use
microservices.

The prototype is built following a
microservices architecture.

DEVOPS-REQ5
DECIDE framework must support the
continuous integration of the
developed apps.

The prototype supports the continuous
integration of the code.

DEVOPS-REQ10
DECIDE framework must provide a
way for team members to
communicate with each other.

Not covered.

DEVOPS-REQ11
DECIDE framework must provide a
way for team members to plan the
development process.

Not covered.

DEVOPS-REQ13

DECIDE framework must support the
application of best practices and
design principles during the first
phases of the development.

Not covered.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 25 of 52

www.decide-h2020.eu

Req. ID Req. Description
Requirement coverage by the
prototype

KR1-REQ22

DECIDE framework must provide a
way to securely share sensitive
information amongst the different
Key Results

The prototype integrates Vault, a
component for securely sharing and
storing secrets.

KR1-REQ23 DECIDE framework must provide a
way to manage its users and the
projects that these users can access

The prototype provides user and
application management.

6.1.1 Fitting into overall DECIDE Architecture

Before explaining in-depth the most important technical aspects of the DevOps framework
implementation, we introduce how the framework is connected with the rest of DECIDE modules and
represent the interfaces that enable the communication among them.

As described above, the DevOps framework is responsible for providing an intuitive user interface (UI)
to developers and operators, so that they are able to orchestrate the communication between the
different DECIDE tools and can provide as input all the parameters necessary to execute them.

Most of the information required by the tools is contained inside the Application Description, which is
a configuration file hosted remotely in JSON format, that can be edited by the DevOps framework and
by any of the DECIDE tools by means of the Application Controller.

The following picture shows how the DevOps framework fits in the general architecture:

Figure 17. DevOps Framework within DECIDE

The DevOps Framework is composed of a backend, responsible for storing and manipulating data, a
frontend that, on one hand, unifies the UIs of the different tools and, on the other, provides a
Dashboard to give an overview of the status of the application.

Besides, a Vault instance is deployed within the DevOps Framework to handle storage and sharing of
sensitive information. The DECIDE KRs will access this component when they require any secret.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 26 of 52

www.decide-h2020.eu

6.2 Technical description

In this section we describe the technical specifications of the DevOps framework implementation,
explaining the global architecture of the system and the behaviour of the main components.

6.2.1 Prototype architecture

The DevOps Framework is designed as a microservices architecture based on isolated containers that
communicate with each other to obtain the required data. The general architecture of the DevOps
framework for this intermediate version is shown in the diagram below. It is composed of multiple
modules that communicate with each other using Cloud Computing techniques, such as service
discovery between each module, or load balancing to control traffic inside the containers network.

Figure 18. DevOps Framework prototype’s architecture diagram

The DevOps Framework interacts with the microservices that correspond with the DECIDE KRs
(ARCHITECT, OPTIMUS, MCSLA, ACSmI and ADAPT). It also deploys instances of SonarQube and
Jenkins, and Vault, for secrets sharing.

In addition, the framework communicates with a local database to store data relative to user access
and application management. The details of this process, along with the Vault system, will be detailed
in section 6.2.2.

Regarding the isolation of each microservice, and as mentioned in deliverable D2.6 [5], the DevOps
platform has been deployed using Docker technology, which allows to containerize each application
inside a separated component, and redirect the communication with the rest of the network
containers, handling network aspects such as service discovery techniques, REST client definition or
load balancing between nodes. Finally, this cloud architecture provides a solution ensuring high

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 27 of 52

www.decide-h2020.eu

scalability and fault tolerance, obtaining as a result, a robust approach that allows to implement new
tools in the future or adapt the platform easily, in case a tool includes important changes in upcoming
versions.

6.2.2 Components description

This section aims at describing the detail of the DevOps Framework’s components. The
implementation of most of them has not changed since the first prototype of the framework and has
already been described in deliverable D2.6 [5], so this section will only analyse those components that
have been added for this release: Vault and the user and application management component.

6.2.2.1 User and application management

The DevOps Framework must keep track of the relationship between projects and owners of said
projects. To achieve that, it keeps a local database with the following information:

Figure 19. Schema of the database for user management

• User Name, Password and Email are requested during user registration on the DECIDE
platform. The email address of the user will be used to notify them of violations.

• Project Name, Description and Git URL information are requested when a project (DECIDE
application) is created. Git URL is stored here to be able to provide it to the tools whenever
they are called. An alternative approach, in which the Git URL is stored in Vault is being
considered as well.

6.2.2.2 Vault

Within DECIDE, a series of considerations have to be taken into account in order to use Vault:

• Tools are authenticated in the Vault DB through a token provided by the DevOps FW.

• This token will be provided as an environment variable at deployment time. Tools can access
Vault with VAULT_TOKEN.

• When a project is created, the DevOps FW will include the Git token (introduced in the Wizard)
in the Vault DB.

• Git tokens are stored in Vault in the following path:

secrets/username/app_N, with app_N being the project stored in the Git that is accessed with
the token.

Within that path, Git tokens are stored as a K/V pair, with the format:

key=git_token

• Then, when a tool is called, the call will contain, besides the Git URL, the username and the
application being worked on. With that information, the tool will request the Git Token from
Vault. The following figure illustrates this process.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 28 of 52

www.decide-h2020.eu

Figure 20. Vault in DECIDE

USAGE

Vault is deployed in the integration environment. It can be accessed on:

http://85.41.90.245:8200

All secrets are stored under the secrets/ path, with the convention mentioned before:

secrets/username/app_N

In order to access Vault, a token is required. This token will be provided by the DevOps framework. A
policy is in place, limiting access for the tools to read-only.

Components can interact with Vault via its API. To obtain a certain secret, the following call must be
sent:

This call will return a JSON file containing the secret:

{
 "request_id": "ac6beaef-200a-a9a3-fe20-cc161cc3c7e9",
 "lease_id": "",
 "renewable": false,
 "lease_duration": 2764800,
 "data": {
 "key": "123"
 },
 "wrap_info": null,
 "warnings": null,
 "auth": null

curl -H "X-Vault-Token: $VAULT_TOKEN" -X GET
http://85.91.40.245:8200/v1/secret/[username]/[app_N]

http://www.decide-h2020.eu/
http://85.41.90.245:8200/
http://85.91.40.245:8200/v1/secret/%5busername%5d/%5bapp_N

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 29 of 52

www.decide-h2020.eu

}

In the prior example, the key is “123”.

Vault provides a graphical UI, that can be useful for operators to check the status of the vault. It can
be accessed here: http://85.91.40.245:8200/ui/vault/auth?with=token .

http://www.decide-h2020.eu/
http://85.91.40.245:8200/ui/vault/auth?with=token

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 30 of 52

www.decide-h2020.eu

7 Delivery and usage

7.1 Package information

This section will briefly detail the architecture of each component. Since there are a lot of files involved,
only the most representative ones will be explained to provide a better understanding of the DevOps
Framework architecture.

7.1.1 DevOps Framework Client

Here it is contained the front-end code developed in Angular 6. It provides the interface with which
users can interact, and the communication with the back-end application.

Figure 21. DevOps Framework Client’s file structure

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 31 of 52

www.decide-h2020.eu

Acsmi-contracting, Acsmi-discovery, Adapt Monitoring, Adapt UI, MCSLA, Architect, and
optimus

These modules request the correct URL of the service from .ts file and through the .html file shows an
iframe or a table to show the data to the user in front-end. The following figures show two sample
code excerpts of these components:

Figure 22. HTML code of ACSmI Contracting module

Figure 23. TS code of ACSmI Discovery module

Components, Dialogs, Modal, Wizard, Wizard-step, Notifications

These modules contain “auxiliary” components to import in the application, such as footer or navbar.

Figure 24. Structure of the “components” module

Guards

This component contains the file auth.guards.ts to manage the permissions. A code sample of this
component can be found in the Annex (Guards).

Login

Provides the view and the logic to implement the login view. A code sample of this component can be
found in the Annex (Login).

Microservice-editor and nfr-editor

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 32 of 52

www.decide-h2020.eu

Both components implement the form to insert new microservices, or new NFRs during the creation
of the project. A code sample of the NFR editor can be found in the Annex (NFR Editor HTML).

Models

This module contains the data models. Below, the structure of this module is shown, as well as a code
snippet.

Figure 25. Structure of the “models” module

Figure 26. Code snippet of the “models” module

Services

This module contains the services that enables the communication of the DevOps Framework server
with the following services:

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 33 of 52

www.decide-h2020.eu

Figure 27. Structure of the “services” module

The most important service is decide.gateway.service.ts, which provides the communication of the
backend with the external manager. A code sample of this component can be found in the Annex
(Services (decide.gateway.service.ts)).

7.1.2 DevOps Framework Server

This component contains the back-end code developed in Java (Spring framework).

It receives the requests from the front-end side and manages the communication between the web
application and the Application Manager Service, and with the external services.

Below, the structure of this component is shown:

Figure 28. DevOps Framework Server’s file structure

The most relevant component is the AppManagerController, which handles the requests to the
Application Manager to update the Application Description. A code sample of this component can be
found in the Annex (DevOps Framework Server (appManagerController).

7.2 Installation instructions

This section refers to the instructions that would have to be followed if it were desired to install a local
instance of the DevOps Framework. However, the best way to access it at this point would be to access
the instance that is deployed in an AIMES’ machine, and accessible here:

http://85.91.40.245:8084/decide/

More details about this deployment can be found in section 7.3.

To deploy the different containers, a docker compose configuration file has been created, so once the
user begins the installation process, it starts the initialization of the required services in a background
task. The user can also build the Docker images for each microservice by compiling the Dockerfile
included in each module directory, but this could be a bit tedious, and the services should be

http://www.decide-h2020.eu/
http://85.91.40.245:8084/decide/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 34 of 52

www.decide-h2020.eu

instantiated in a certain order, so Spring Cloud modules are initialized correctly, and also because
module may communicate with others.

Installation requirements

• Have Docker tool installed in your machine and accessible from the terminal.

• Have Git installed, or just unzip the compressed file downloaded from the repository (see
section 3.5).

• We also recommend running the DECIDE DevOps framework in a powerful machine, because
the project is composed several Docker containers and that may consume some of your RAM
resources. Our recommendation is to have a minimum of 4Gb RAM resources and about 1GB
free for storage.

Getting started

1. Clone the DevOps framework Git repository in your computer.
2. Navigate to the main root directory of the project
3. Run in the console the command docker-compose up

4. It will automatically deploy all the microservices containers in your localhost domain. This
deployment may take a few minutes (about 1 minute), to be fully configurated and accessible
from your browser.

5. Access to the main DevOps framework web page in http://localhost:4000 in your local machine
browser.

7.3 User Manual

As mentioned above, there is a deployment of the DevOps Framework available on
http://85.91.40.245:8084/decide/ with the DECIDE KRs integrated.

 The following table shows the endpoints where each DECIDE component is deployed:

Table 3. Endpoints of DECIDE components

Component Deployment port

ADAPT

ADAPT DO 8081

ADAPT monitoring 8088

VH 8095

MCSLA

MCSLA service 8082

MCSLA ui 8083

Cloud Compendium 8001

AppController

AppController Not required

OPTIMUS

OPTIMUS server 8090

ARCHITECT

ARCHITECT server 8001

ACSmI

ACSmI discovery registry -

ACSmI discovery server 8087

ACSmI discovery client 8087

ACSmI contracting 8089

http://www.decide-h2020.eu/
http://localhost:4000/
http://85.91.40.245:8084/decide/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 35 of 52

www.decide-h2020.eu

DevOps Framework

Devops FW server 8000/devopsframework-
server

Devops FW client 8084

Other components

Jenkins 8091

SQ 8092

Grafana 8093

Shockshop UI 8079

Nginx GATEWAY 8000

7.4 Licensing information

This component is offered under the MIT license.

7.5 Download

The source code is uploaded in WP2 DECIDE git repository and available here:

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/DevOpsFramework

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/DevOpsFramework

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 36 of 52

www.decide-h2020.eu

8 Conclusions

This document has presented the second prototype of the DevOps framework, corresponding to the
M27 release. The new implemented functionalities have been described, as well as the integration
environment that has been set up for the deployment of the DevOps Framework and the rest of the
DECIDE Key Results.

The document also contains a description of the prototype from a functional and a technical point of
view, and it contains usage and installation instructions for the component.

The next release of this deliverable (D2.8) will document the third version of the DevOps framework
and will be delivered by M33.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 37 of 52

www.decide-h2020.eu

References

[1] Hashicorp, "Introduction to Vault," 2019. [Online]. Available:
https://www.vaultproject.io/docs/what-is-vault/index.html. [Accessed 20 February 2019].

[2] Hashicorp, "Vault documentation," 2019. [Online]. Available:
https://learn.hashicorp.com/vault/secrets-management/sm-static-secrets. [Accessed 20
February 2019].

[3] DECIDE Consortium, “D2.1 - Detailed requirements specification v1,” 2017.

[4] DECIDE Consortium, “D2.2 Detailed requirements specification v2,” 2018.

[5] DECIDE Consortium, “D2.6 Initial DECIDE DevOps Framework Integration,” 2018.

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 38 of 52

www.decide-h2020.eu

Annex A. Code snippets

Guards

import { Injectable } from '@angular/core';

import { Router, CanActivate, CanActivateChild , ActivatedRouteSnapshot, RouterStateSnapshot } from

'@angular/router';

import { DecideGatewayService } from '../services/decide.gateway.service';

@Injectable()

export class AuthGuard implements CanActivate, CanActivateChild {

 constructor(private router: Router, private decideGatewayService: DecideGatewayService) { }

 canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) {

 if (localStorage.getItem('currentUser') != null) {

 // logged in so return true

 return true;

 }

 console.log("Not Logged In");

 // not logged in so redirect to login page with the return url

 this.router.navigate(['/login'], { queryParams: { returnUrl: state.url }});

 return false;

 }

 canActivateChild(route: ActivatedRouteSnapshot, state: RouterStateSnapshot): boolean {

 console.log('checking child route access');

 if (this.decideGatewayService.loggedIn) {

 // logged in so return true

 return true;

 }

 console.log("Not Logged In");

 // not logged in so redirect to login page with the return url

 this.router.navigate(['/login']);

 return false;

 }

}

Login

login() {

 this.decideGatewayService.login(this.model.username, this.model.password)

 .subscribe(

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 39 of 52

www.decide-h2020.eu

 data => {

 if(data){

 this.router.navigate(['/dashboard']);

 } },

 error => {

 //this.alertService.error(error);

 this.decideGatewayService.loggedIn = false;

 this.error = "Error authenticating"

 });

 }

NFR Editor HTML

<div class="container col-md-12" [formGroup]='microserviceForm'>

 <div class="form-group">

 <h6 for="msNameInput">Name</h6>

 <input type="text" formControlName="name" class="form-control" id="msNameInput"

name="msNameInput" placeholder="Enter DECIDE app name">

 </div>

 <!--<div class="form-group">

 <h6 for="msTypeInput">Type</h6>

 <select formControlName="type" class="form-control form-control-sm" id="msTypeInput">

 <option value="" selected disabled hidden>Select the microservice type</option>

 <option>Database</option>

 <option>Computing</option>

 <option>Storage</option>

 </select>

 </div>-->

 <div class="form-group">

 <h6 for="msProgrammingLanguageInput">Programming Language</h6>

 <input type="link" formControlName="programmingLanguage" class="form-control"

id="msProgrammingLanguageInput" name="msProgrammingLanguageInput" placeholder="Enter microservice

programming language">

 </div>

 <div class="form-group form-check">

 <div class="col-md-2">

 <input class="form-check-input" formControlName="stateful" type="checkbox" value="stateful"

id="stateful">

 <label class="form-check-label" for="stateful">Stateful</label>

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 40 of 52

www.decide-h2020.eu

 </div>

 <div class="col-md-2">

 <input class="form-check-input" formControlName="publicIp" type="checkbox" value="publicIp"

id="publicIp">

 <label class="form-check-label" for="publicIp">Public IP</label>

 </div>

 </div>

 <!-- TAGS -->

 <div class="card container form-group">

 <h6>Tags</h6>

 <div class="input-group">

 <input class="form-control" #tagbox type="text" required>

 <button class="btn btn-primary" (click)="addTag(tagbox.value);tagbox.value=''">Add</button>

 </div>

 <div class="tag-container">

 <div *ngFor='let tag of microserviceForm.controls.tags.controls; let i = index'>

 <div class="tag-label">

 {{ tag.value }}

 <div class="separator"></div>

 <span style="cursor:pointer" class="glyphicon glyphicon-remove"

(click)='clearTag(i)'>

 </div>

 </div>

 </div>

 </div>

</div>

Services (decide.gateway.service.ts)

@Injectable()

export class DecideGatewayService {

 apiUrl = environment.gateway;

 apiArchitect = environment.apiArchitect;

 private token : string;

 private headers = new Headers({'Content-Type':'application/json'});

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 41 of 52

www.decide-h2020.eu

 loggedIn : boolean;

 //Jenkins credentials

 jenkinsUsername= environment.jenkinsUsername;

 jenkinsToken= environment.jenkinsToken;

 constructor(private http: Http) {

 }

 createAuthorizationHeader(headers: Headers) {

 headers.append('Authorization', 'Basic ' +

 this.token);

 }

 /*

 * API CALLS

 */

 //AUTH

 login(username: string, password: string): Observable<boolean>{

 this.loggedIn = false;

 console.log(JSON.stringify({username: username, password: password}));

 return this.http.post(this.apiUrl + "/api/auth", JSON.stringify({username: username, password:

password}), {headers: this.headers})

 .map((response: Response) => {

 // login successful if there's a jwt token in the response

 let token = response.json() && response.json().token;

 console.log(response)

 if (token) {

 // set token property

 this.loggedIn = true;

 this.token = token;

 // store username and jwt token in local storage to keep user logged in between page

refreshes

 localStorage.setItem('currentUser', JSON.stringify({ username: username, token:

this.token }));

 // return true to indicate successful login

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 42 of 52

www.decide-h2020.eu

 return true;

 }else {

 // return false to indicate failed login

 this.loggedIn = false;

 return false;

 }

 })

 .catch((error:any) => Observable.throw(error.json().error || 'Server error'));

 }

 getToken() : string{

 var currentUser = JSON.parse(localStorage.getItem('currentUser'));

 this.token = currentUser && currentUser.token;

 if(this.token != null){

 return this.token;

 }

 return "";

 }

 logout(): void {

 // clear token remove user from local storage to log user out

 localStorage.removeItem('currentUser');

 this.loggedIn = false;

 }

 //DECIDE APPS CRUD

 getDecideApps(): Observable<DecideApp[]>{

 let headers = new Headers ({'Content-Type':'application/json','x-auth-token': this.getToken()});

 console.log(headers)

 return this.http.get(this.apiUrl + "/getDecideProjects", {headers: headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw('Server error'));

 }

 createDecideApp(decideApp:DecideApp): Observable<boolean>{

 let headers = new Headers

 headers.append("x-auth-token",this.getToken());

 headers.append("Content-Type","application/json");

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 43 of 52

www.decide-h2020.eu

 //console.log(this.getToken())

 return this.http.post(this.apiUrl + "/createDecideProject", decideApp, {headers: headers})

 .map((res: Response) => true)

 .catch((error: any) => Observable.throw('Server error'));

 }

 /************************************

 * APP DESC RETRIEVAL - DevOps Framework - Server

 *************************************/

 getApplicationDescription(decideProject:DecideProject): Observable<String[]> {

 let headers = new Headers

 headers.append("x-auth-token",this.getToken());

 headers.append("Accept","application/json");

 return this.http.post(this.apiUrl + "/getApplicationDescription",decideProject,{headers: headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw('Server error'));

 }

 getNFRs(decideProject:DecideProject): Observable<String[]> {

 let headers = new Headers

 headers.append("x-auth-token",this.getToken());

 headers.append("Accept","application/json");

 return this.http.post(this.apiUrl + "/nfrs",decideProject,{headers: headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw('Server error'));

 }

 getMicroservices(decideProject:DecideProject): Observable<Microservice[]> {

 let headers = new Headers

 headers.append("x-auth-token",this.getToken());

 headers.append("Accept","application/json");

 return this.http.post(this.apiUrl + "/microservices",decideProject,{headers: headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw('Server error'));

 }

 getRecommendedPatterns(decideProject:DecideProject): Observable<String[]>{

 let headers = new Headers

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 44 of 52

www.decide-h2020.eu

 headers.append("x-auth-token",this.getToken());

 headers.append("Accept","application/json");

 return this.http.post(this.apiUrl + "/patterns",decideProject,{headers: headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw('Server error'));

 }

 getSimulationSchema(decideProject:DecideProject): Observable<String[]>{

 let headers = new Headers

 headers.append("x-auth-token",this.getToken());

 headers.append("Accept","application/json");

 return this.http.post(this.apiUrl + "/schema",decideProject,{headers: headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw(error));

 }

 /*************************************

 * ARCHITECT

 *************************************/

 recommendPatterns(nfr: string): Observable<NFR[]> {

 let headers = new Headers

 return this.http.get(this.apiArchitect + "/inferred/patterns",{params:{'nfr':nfr},headers: headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw('Server error'));

 }

 /************************************

 * OPTIMUS

 *************************************/

 getAllSimulations(): Observable<String> {

 let headers = new Headers

 headers.append("Accept","application/json");

 return this.http.get(environment.apiOptimus + "/optimussimulation/applications",

{headers:headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw('Server error'));

 }

 /************************************

 * JENKINS

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 45 of 52

www.decide-h2020.eu

 *************************************/

 pingService(): Observable<String> {

 return this.http.get(this.apiUrl + "/")

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw(error.json().error || 'Server error'));

 }

 jenkinsSockshopQuery =

"/api/json?tree=jobs[name,url,healthReport[score],state,lastBuild[timestamp,result,duration,number,url]

,lastSuccessfulBuild[timestamp,result,duration,number,url],lastFailedBuild[timestamp,result,duration,nu

mber,url], builds[number,actions[parameters[name,value]]]]&pretty=true"

 getJobs(): Observable<String> {

 let headers = new Headers();

 headers.append("Authorization", "Basic " + btoa(this.jenkinsUsername + ":" + this.jenkinsToken));

 headers.append("Content-Type", "application/x-www-form-urlencoded");

 return this.http.get(environment.apiJenkins + this.jenkinsSockshopQuery, {headers:headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw(error.json().error || 'Server error'));

 }

 buildJob(name:string): Observable<String>{

 let headers = new Headers();

 headers.append("Authorization", "Basic " + btoa(this.jenkinsUsername + ":" + this.jenkinsToken));

 headers.append("Content-Type", "application/x-www-form-urlencoded");

 return this.http.post(environment.apiJenkins + "/job/" + name + "/build", {} , {headers:headers})

 .map((res: Response) => res.text())

 .catch((error: any) => Observable.throw(error.json().error || 'Server error'));

 }

 /************************************

 * SonarQube

 *************************************/

 sqToken = "75c6a2cd3747c23ba113499e0065f0b1da7cafaa";

 getSonarProjects(): Observable<String>{

 let headers = new Headers();

 //headers.append("Authorization", "Basic " + btoa("admin" + ":" + "decide-admin"));

 //headers.append("Content-Type", "application/x-www-form-urlencoded");

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 46 of 52

www.decide-h2020.eu

 return this.http.get(environment.apiSonarQube + "/api/components/search?qualifiers=TRK",

{headers:headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw(error.json().error || 'Server error'));

 }

 getSonarMetrics(projectId:string): Observable<String>{

 let headers = new Headers();

 return this.http.get(environment.apiSonarQube + "/api/measures/component?component=" + projectId

+"&metricKeys=bugs,vulnerabilities,code_smells,violations,coverage", {headers:headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw(error.json().error || 'Server error'));

 }

 /************************************

 * ACSmI Discovery

 *************************************/

getMonitoringApplications(){

 let headers = new Headers();

 headers.append("Content-Type", "application/json");

 headers.append("Accept", "application/json");

 return this.http.get(environment.apiAdaptMonitoring + "/monitoringmanager/api/applications ",

{headers:headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw(error.json().error || 'Server error'));

 }

/************************************

 * ACSmI Discovery

 *************************************/

 getCSFromIds(ids:string){

 let headers = new Headers();

this.sqToken));

 headers.append("Content-Type", "application/json");

 headers.append("Accept", "application/json");

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 47 of 52

www.decide-h2020.eu

 return this.http.get(environment.apiAcsmiDiscovery +

"/acsmiservices/api/services/optimus?serviceids=" + ids, {headers:headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw(error.json().error || 'Server error'));

 }

/************************************

 * ACSmI Contracting

 *************************************/

 getAcsmiContractingEndpoint(): Observable<String>{

 let headers = new Headers();

 headers.append("Access-Control-Allow-Origin", "*");

 headers.append("Content-Type", "application/json");

 return this.http.post(environment.apiAcsmiContracting + "/decide/acsmi/contracting/api/v1/sessions"

, {} , {headers:headers})

 .map((res: Response) => res.json())

 .catch((error: any) => Observable.throw(error.json().error || 'Server error'));

 }

}

DevOps Framework Server (appManagerController)

@RestController
public class AppManagerController {

 @Autowired
 BasicUserService userService;

 private static final String REPOSITORY_PATH = "src/main/resources/decide-
projects/";

 //Commit messages
 private static final String COMMIT_MSG_CREATE_APP_DESC = "Initialized DECIDE
app name and description";

 //Errors
 private static final String ERROR_MSG_PROJECT_NOT_CREATED = "Error while
creating the new DECIDE project.";
 private static final String ERROR_MSG_PROJECT_NOT_FOUND = "Error - The
requested DECIDE project doen't exists.";

 @RequestMapping(value = "/createDecideProject", method = RequestMethod.POST)

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 48 of 52

www.decide-h2020.eu

 public String createDecideProject(@RequestBody Map<String, Object> payload)
throws IOException, AppManagerException {
 try {
 String gitRef = (String) payload.get("gitRef");
 String token = (String) payload.get("token");

 JSONObject json= new JSONObject(payload);

 //Create id
 json.remove("gitRef");
 json.remove("token");

 //Local repositories config
 String name = (String) payload.get("name");
 String description = (String) payload.get("description");
 String appDescName = "DECIDE.json";
 String repoPath= REPOSITORY_PATH + name;

 //Creation of the repository folder

 //Create Application Description file (DECIDE.json) to the new
app repo
 AppDescription appDescription =
AppDescriptionFactory.fromJson(json.toString());
 System.out.println("Creating DECIDE project: " + name);
 System.out.println("Appdesc: " + json.toString());

 //Initialize the Git repo. Create folder
 System.out.println("gitRef: " + gitRef + "token: " + token +
"repoPath: " + repoPath);

 AppManager manager = openAppManager(gitRef, token ,
FileSystems.getDefault().getPath(repoPath));
 boolean success = true;

 if(success) {
 //Write AppDescription and close AppManager
 manager.writeAndSync(appDescription,
COMMIT_MSG_CREATE_APP_DESC);

 //DEVOPS FRAMEWORK - MONGODB
 //Add Decide project to logged user
 System.out.println("CURRENT: " +
userService.getCurrent().getName());
 User loggedUser =
userService.findByUsername(userService.getCurrent().getName());

 //TODO: Switch token or username;
 loggedUser.addProject(new
DecideProject(appDescription.getId(), gitRef, token, appDescription.getName()));
 userService.update(loggedUser.getId(), loggedUser);

 manager.sync();
 manager.close();
 return "{\"success\":\"" + 1 + "\"}";
 }else {
 System.out.println("error");
 return "{\"error\":\"" + ERROR_MSG_PROJECT_NOT_CREATED +
"\"}";

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 49 of 52

www.decide-h2020.eu

 }
 }catch(Exception e) {
 e.printStackTrace();
 return "{\"error\":\"" + e.getMessage() + "\"}";
 }

 }

 @RequestMapping(value = "/getApplicationDescription/{name}", method =
RequestMethod.GET)
 public String getApplicationDescription(@PathVariable("name") String name)
throws IOException, AppManagerException {

 DecideProject selectedProject = null;
 String repoPath= REPOSITORY_PATH + name;
 System.out.println(repoPath);

 //Get project info from MongDB
 User loggedUser =
userService.findByUsername(userService.getCurrent().getName());
 for(DecideProject project: loggedUser.getProjects()) {
 if(project.getName().equals(name)) {
 selectedProject = project;
 }
 }

 if(selectedProject!=null) {
 //Creation of the repository folder
 boolean exists = new File(repoPath).mkdirs();
 try {
 if(exists) {
 System.out.println("exists");
 //Get app desc and return it
 AppManager manager =
AppManager.open(FileSystems.getDefault().getPath(repoPath));
 //TODO:Pull
 //manager.sync();
 AppDescription appDescription =
manager.getAppDescription();
 System.out.println(appDescription.toString());
 manager.close();
 return new
ObjectMapper().writeValueAsString(appDescription);
 }else {
 System.out.println("exists no");

 //Fetch the repo
 //System.out.println("Not found");
 System.out.println("gitRef: " +
selectedProject.getGitRef() + "token: " + selectedProject.getToken() + "repoPath: "
+ repoPath);
 AppManager manager =
openAppManager(selectedProject.getGitRef(), selectedProject.getToken(),
FileSystems.getDefault().getPath(repoPath));
 AppDescription appDescription =
manager.getAppDescription();

 //TODO: Save in user database?

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 50 of 52

www.decide-h2020.eu

 return new
ObjectMapper().writeValueAsString(appDescription);
 }
 }catch(Exception e) {
 e.printStackTrace();
 return "{\"error\":\"" + ERROR_MSG_PROJECT_NOT_FOUND +
"\"}";
 }
 }
 return "{\"error\":\"" + "Project not found " + "\"}";

 }
 /*
 * PROJECTS management
 */
 @RequestMapping(value = "/getDecideProject/{name}", method =
RequestMethod.GET)
 public DecideProject getDecideProject(@PathVariable String name){
 User loggedUser =
userService.findByUsername(userService.getCurrent().getName());
 for(DecideProject project: loggedUser.getProjects()) {
 if(project.getName().equals(name)) {
 return project;
 }
 }
 return null;
 }

 @RequestMapping(value = "/getDecideProjects", method = RequestMethod.GET)
 public List<DecideProject> getDecideProjects() {
 System.out.println("getDecideProjects");
 User loggedUser =
userService.findByUsername(userService.getCurrent().getName());
 List<DecideProject> projects = new ArrayList<>();
 projects = loggedUser.getProjects();
 return projects;
 }

 /*
 *Look info stored in the app description
 */
 //NFRs
 @RequestMapping(value = "/nfrs", method = RequestMethod.POST)
 public List<Nfr> getNFRs(@RequestBody DecideProject decideProject) {
 String repoPath= REPOSITORY_PATH + decideProject.getName();
 List<Nfr> nfrs = new ArrayList();
 AppManager manager;
 try {
 System.out.println("getNFRs - " + decideProject.getGitRef());
 manager = openAppManager(decideProject.getGitRef(),
decideProject.getToken(), FileSystems.getDefault().getPath(repoPath));
 //Pull
 manager.sync();
 nfrs = manager.getAppDescription().getNfrs();
 //manager.close();
 } catch (AppManagerException | IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 51 of 52

www.decide-h2020.eu

 return nfrs;
 }

 //Microservices
 @RequestMapping(value = "/microservices", method = RequestMethod.POST)
 public List<Microservice> getMicroservices(@RequestBody DecideProject
decideProject) {
 String repoPath= REPOSITORY_PATH + decideProject.getName();
 List<Microservice> microservices = new ArrayList();
 AppManager manager;
 try {
 System.out.println("getMicroservices - " +
decideProject.getGitRef());
 manager = AppManager.open(decideProject.getGitRef(),
decideProject.getToken(), FileSystems.getDefault().getPath(repoPath));
 //Pull
 manager.sync();
 microservices = manager.getAppDescription().getMicroservices();
 //manager.close();
 } catch (AppManagerException | IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return microservices;
 }

 //Patterns
 @RequestMapping(value = "/patterns", method = RequestMethod.POST)
 public List<Pattern> getPatterns(@RequestBody DecideProject decideProject) {
 String repoPath= REPOSITORY_PATH + decideProject.getName();
 List<Pattern> patterns = new ArrayList();
 AppManager manager;
 try {
 System.out.println("getPatterns - " +
decideProject.getGitRef());
 manager = openAppManager(decideProject.getGitRef(),
decideProject.getToken(), FileSystems.getDefault().getPath(repoPath));
 //Pull
 manager.sync();
 patterns =
manager.getAppDescription().getRecommendedPatterns();
 //manager.close();
 } catch (AppManagerException | IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return patterns;
 }

 //Simulation Schema
 @RequestMapping(value = "/schema", method = RequestMethod.POST)
 public List<SchemaElement> getSimulationSchema(@RequestBody
DecideProject decideProject) {
 String repoPath= REPOSITORY_PATH + decideProject.getName();
 List<SchemaElement> schemas = new ArrayList();
 AppManager manager;
 try {
 System.out.println("getSchema - " +
decideProject.getGitRef());

http://www.decide-h2020.eu/

D2.7 – Intermediate DECIDE DevOps Framework Integration Version 1.0 – Final. Date: 28.02.2019

© DECIDE Consortium Contract No. GA 731533 Page 52 of 52

www.decide-h2020.eu

 manager = openAppManager(decideProject.getGitRef(),
decideProject.getToken(), FileSystems.getDefault().getPath(repoPath));
 //Pull
 manager.sync();
 schemas = manager.getAppDescription().getSchema();

 //Format the response

 //manager.close();
 } catch (AppManagerException | IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return schemas;
 }

 /*
 * Aux
 */
 public AppManager openAppManager(String gitRef,String token, Path path)
throws AppManagerException{
 AppManager manager = AppManager.open(gitRef,token,path);
 return manager;
 }
}

http://www.decide-h2020.eu/

