
D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 1 of 19

www.decide-h2020.eu

Deliverable

D3.10 Initial multi-cloud native application controller

Editor(s): Lena Farid (Fraunhofer)

Responsible Partner: Fraunhofer

Status-Version: Final – v1.0

Date: 30/11/2017

Distribution level (CO, PU): Confidential

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 2 of 19

www.decide-h2020.eu

Project Number: GA 726755

Project Title: DECIDE

Title of Deliverable: D3.10 Initial multi-cloud native application controller

Due Date of Delivery to the EC: 30/11/2017

Workpackage responsible for the
Deliverable:

WP3 – Continuous Architecting

Editor(s): Lena Farid (Fraunhofer)

Contributor(s): Leo Li and Lena Farid (Fraunhofer)

Reviewer(s): Lorenzo Blasi (HPE)

Approved by: All Partners

Recommended/mandatory
readers:

WP5, WP4, WP3, WP2

Abstract: This software deliverable comprises the initial multi-
cloud native application controller This initial version
will concentrate on a specific programming language,
cloud technology and standard.

Keyword List: Application Controller, Deployment History, OPTIMUS,
Deployment Topology

Licensing information: The software documented in this deliverable is
licensed under the Eclipse Public License version 2.0

The document itself is delivered as a description for
the European Commission about the released
software, so it is not public.

Disclaimer This deliverable reflects only the author’s views and
views and the Commission is not responsible for any
use that may be made of the information contained
therein

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 3 of 19

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 26/10/2017 First draft version Leo Li (Fraunhofer)

V0.2 17/11/2017 second draft version Lena Farid (Fraunhofer)

V0.3 20/11/2017 Third draft version Lena Farid (Fraunhofer)

V0.35 22/11/2017 Reviewed by HPE Lorenzo Blazi (HPE)

V0.4 22/11/2017 Final version Lena Farid (Fraunhofer)

V1.0 23/11/2017 Ready for submission Leire Orue-Echevarria
(TECNALIA)

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 4 of 19

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 4

List of Tables .. 4

Terms and abbreviations ... 5

Executive Summary ... 6

1 Introduction ... 7

1.1 About this deliverable ... 7

2 Implementation ... 8

2.1 Functional description ... 8

2.1.1 Fitting into overall DECIDE Architecture ... 9

2.2 Technical description and specification .. 13

2.2.1 Application Controller Operations .. 13

2.2.2 JSON for Deployment History .. 14

3 Delivery and Usage .. 16

3.1 Package Information ... 16

3.2 Build Instructions ... 16

3.3 Library Usage ... 16

3.4 Licensing Information .. 16

4 Conclusions .. 17

5 References ... 18

List of Figures

FIGURE 1. APPLICATION CONTROLLER IN THE CONTEXT OF DECIDE ... 9
FIGURE 2. USE CASE DIAGRAM FROM APPLICATION CONTROLLER .. 10
FIGURE 3. SEQUENCE DIAGRAM FOR CREATING A HISTORY FILE .. 12

List of Tables

TABLE 1. RELATIONSHIP BETWEEN APPLICATION CONTROLLER FUNCTIONALITIES AND REQUIREMENTS 8
TABLE 2. FIELDS IN A DEPLOYMENT HISTORY JSON-BASED FILE ... 14
TABLE 3. APPLICATION CONTROLLER TASKS .. 17

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 5 of 19

www.decide-h2020.eu

Terms and abbreviations

CSP Cloud Service Provider

DoA Description of Action

JAR Java Archive

JSON JavaScript Object Notation

SLA Service Level Agreement

URI Unified Resource Identifier

URL Unified Resource Locator

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 6 of 19

www.decide-h2020.eu

Executive Summary

The document at hand accompanies the deliverable “D3.10: Initial multi-cloud native application
controller” (software demonstrator) and documents it from a functional and technical perspective.
This deliverable is one of two more to come.

The notion of said documentation is to provide developers with the information regarding the aim of
the software, i.e. the Application Controller, how it is implemented, how it fits into the DECIDE project
as a whole and how to use it.

The deliverable includes a JAVA library to create a deployment history of (micro-)services. It is
packaged as a Jar file that delivers functions to create and alter entries in a JSON-based history file.
The aim is to include the history in a working git repository. Functions to retrieve and push files to a
repository are given as well. With this approach, the DevOps philosophy followed in the DECIDE project
is further pursued. Furthermore, OPTIMUS or any interested DECIDE tool may re-use this library in
order to access information regarding the current and historical deployment topology for a given
application.

It is envisioned that the Application Controller will be extended in the future to include more
functionality.

Future work and deviations from the Dow are discussed in the conclusion. Certain aspects have been
moved to WP4 (CSP script generation) [1] and others will be part of the architectural work and
implementation in Year 2 of the project.

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 7 of 19

www.decide-h2020.eu

1 Introduction

The functionality of the Application Controller as understood by the DECIDE consortium should for one
reflect the status and state of the application and connect the former with the DECIDE tools in the
sense of enabling each tool to understand its corresponding fulfilments.

In Year 1 of the project, the Application Controller has attained the role of assisting in managing the
intelligence regarding the currently used deployment configuration and the historical ones. It keeps
records whether a deployment configuration was successful and if any SLA violations had occurred in
the applications operation time. With this information, OPTIMUS is able to suggest new and adequate
deployment configurations.

The Application Controller is implemented as a globally re-useable library in the DECIDE framework.
The main purpose is to offer global functions and processes to other components. The Application
Controller is developed on top of a main git repository, which contains necessary information about
the developed services.

1.1 About this deliverable

This document explains the implemented functions and processes of the current Application Controller
library. Furthermore, a brief introduction is given to setup and integrate in other components.

Section 2 of this deliverable describes implementation details and Section 3 covers how to pull, build
and use the library.

In section 4, the conclusion is presented along with deviations from the DoA [1] and an outline for
future work.

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 8 of 19

www.decide-h2020.eu

2 Implementation

2.1 Functional description

The Application Controller component assists in managing the intelligence regarding the currently used
deployment configuration and historical ones. It keeps records whether a deployment configuration
was successful and if any SLA violations had occurred in the applications operation time. With this
information, OPTIMUS is able to suggest new and adequate deployment configurations and not reuse
a previous deployment configuration that deemed unsuccessful or faulty in terms of security,
performance or legal awareness.

The following functionalities have been implemented in year 1 of the project as part of the Application
Controller:

F1. Holding the intelligence of the different deployment configurations that the multi-cloud
application has had in its operation time.

F2. Storing these deployment configurations in a JSON based history file in an accessible git
repository, where the application description also resides.

F3. Provide OPTIMUS with the operations required in order to read and write the chosen
deployment configuration. In the case of reading, avoiding those configurations that resulted
problematic in terms of security, performance or legal awareness can be achieved.

F4. Provide the DECIDE DevOps Framework with the necessary operations to read from the
historical configuration.

F5. The deployment history will include meta-data regarding the deployment configuration such
as time and date of deployment, the current status, information on the microservice, CSP data
and information regarding any SLA breaches that have taken place.

F6. The deployment history file is stored in an accessible location (git repository) and the
mechanisms for accessing, updating and deleting the file and its entries are available.

The following table details the relationship between the Application Controller requirements indicated
in a project internal collaborative online sheet1 and the implemented functionalities, with a description
of the coverage for each functionality.

Table 1. Relationship between Application Controller functionalities and requirements

Functionality Req. ID Coverage

F1 – F3 WP3-CONTR-REQ2, WP3-
CONTR-REQ9, WP3-CONTR-
REQ11

A library is implemented to cover this aspect and
the data format (JSON) and structure has been
provided to hold all relevant and needed
information for OPTIMUS.

F4 WP3-CONTR-REQ1 The multi-cloud native application controller is
implemented as a JAVA Library and can be used
by any Java source Code very easily.

F5-F6 WP3-CONTR-REQ12 The library provides methods in order to access a
git repository with the supplied credentials, push,
and pull relevant information into a JSON file

1 Application Controller Requirements Sheet:
https://docs.google.com/spreadsheets/d/1R9pPkZFwxzld63Hfe_YzoxQAnabe85QguzNCLzAj968/edit#gid=1301
479309

http://www.decide-h2020.eu/
https://docs.google.com/spreadsheets/d/1R9pPkZFwxzld63Hfe_YzoxQAnabe85QguzNCLzAj968/edit#gid=1301479309
https://docs.google.com/spreadsheets/d/1R9pPkZFwxzld63Hfe_YzoxQAnabe85QguzNCLzAj968/edit#gid=1301479309

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 9 of 19

www.decide-h2020.eu

Functionality Req. ID Coverage

dedicated for the historical deployment
configuration.

2.1.1 Fitting into overall DECIDE Architecture

The Application Controller library acts as a facilitator for OPTIMUS in terms of creating and accessing
historical information regarding the applications deployment topologies. The history file is located in
a git repository adjacent to the Application Description. Both, the repository and the Application
Description are initially created during the Application development phase.

The Application Description holds all necessary information for describing and classifying the
application. It also holds the state of the application. The deployment history file complements the
Application Description by providing information regarding the historical deployment configurations
in a simple structure that is easily understood and parsed by the DECIDE tools (OPTIMUS more
specifically).

As depicted in Figure 2, the Application Controller is an intermediate step between OPTIMUS and the
Git Repository and provides the required interfaces for it (implemented as Java operations).

Figure 1. Application Controller in the context of DECIDE

Figure 2 depicts the use cases for the Application Controller at this stage of the project.

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 10 of 19

www.decide-h2020.eu

Figure 2. Use Case Diagram from Application Controller

The use cases depicted in Figure 2 are all implemented as methods as part of the JAVA Library and
form an intermediate step between OPTIMUS and the Git repository. The following is a brief
description of the use cases:

UC1. Define application context

This use case adds the application context to the Application Controller2. In terms of the git
repository URI (local and remote), the git credentials (username and password) for accessing the
repository (if a private one), the local directory to push changes to, and setting the URI for the
Application Description.

UC2. Create/ get history

This use case is to get an existing history file or create a new one. Its specialisation lies in creating
a new breach to be added to the history file and committing the history file to a local repository.

UC3. Clone repository

2 In Java terms, this use case is for instantiating the Application Controller with the relevant properties.

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 11 of 19

www.decide-h2020.eu

This use case allows for cloning an existing repository, making sure that consistency and
concurrency controls are met. A specialisation is when using a private repository; in this case, the
credentials3 are needed.

UC4. Pull & push repository

This use case allows for pushing changes and pulling from the remote repository, making sure that
consistency and concurrency controls are met. A specialisation is when using a private repository;
in this case, the credentials are needed.

The following is a sequence diagram to help understand how to use the library in the correct sequential
order. The sequence diagram depicts the use case UC2 - Create history and create new breach.

3 The credentials for accessing git will always only be available during the lifetime of an instance of the Application Controller

and have always to be supplied when a new instance is created. The secure storage of the credentials will be managed in a
future release.

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 12 of 19

www.decide-h2020.eu

Figure 3. Sequence Diagram for creating a history file

The sequence diagram depicted in Figure 3 shows the sequential order for using the library in order to
ultimately add a new deployment to the deployment history and secondly to add new breaches to an
existing deployment in the history file.

First a new deployment is to be added to the deployment history and secondly to add new breaches
to an existing deployment in the history.

1. new AppController(): First start by initiating the Application Controller Class with the
required input parameters.

2. cloneRepositoryWithCred(): this method clones the remote repository to a local folder. If
the repository already exists the method pullRepoWithCred() just updates the local
repository with changes from the remote one.

3. After a successful deployment takes place a new deployment entry can be added by using
the writeHistory() method.

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 13 of 19

www.decide-h2020.eu

4. The method addHistory() registers new added content to the local repository.
5. And commitHistory() creates a new commit with all the registered content.
6. Finally the local changes can be pushed to the remote repo with pushRepoWithCred().
7. At any point a new breach can be added by using the newBreach() method. To guarantee

the repositories stay synchronized the local repository should be updated with
pullRepoWithCred() before editing/adding new entries to the history. The newBreach()
method can be used with a date to relate the new breach to a certain deployment.

In the case of a public remote repository, which does not expect credentials when accessing it, the
developers should use the respective method names without the trailing ("withCred").

2.2 Technical description and specification

The library is implemented using the JAVA programming language; it connects to git repositories and
writes to a JSON file. The history is structured around the different microservices that the DECIDE
framework is deploying.

The prototype defines the class Application Controller that holds all necessary methods to write and
update the deployment history. A Java Doc goes further into details.

The app controller uses the JGIT [2] and JSON.simple [3] libraries: the first one to communicate with a
git repository to be specified and the second one to write JSON entries to the deployment history. The
Application Controller library is packaged with MAVEN, which creates a reusable JAR file.

The Application Controller may be used as a normal jar file to be integrated in other components of
the DECIDE framework. The library can be added to your projects and offers all the needed methods
in order to be able to create the JSON History file with its related content, push it to a git repository
and pull it when needed.

The Library also manages the connections including the credentials for git. The secure storage of the
credentials will be managed in a future release

2.2.1 Application Controller Operations

The most up-to-date documentation for the methods, their parameters and return values can be found
in the JavaDoc. An excerpt of the JavaDoc is given below:

• void addHistory() – This operation is git specific and ads the JSONHistory file to the index
to be commited next.

• void cloneRepository() - Clone the defined repository to the defined directory or if it

already exists opens the repository.

• void cloneRepositoryWithCred() - Clone the defined repository to the defined

directory or if it already exists opens the repository.

• void commitHistory(java.lang.String message) - Commit the latest changes in

the repository.

• java.lang.String getApplicationDesc() – get the specified Application

Description.

• java.lang.String getDirectory() – get the local directory to commit to.

• org.eclipse.jgit.api.Git getGitRepository() – get the git repository itself.

• java.lang.String getRepositoryUrl() – return the git repository URL

• java.lang.String getUsername() – get the user name for accessing the git

repository.

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 14 of 19

www.decide-h2020.eu

• void newBreach(java.lang.String serviceId,

org.json.simple.JSONObject slaBreach) - Create a new SLABreach object and add it

to the last saved deployment of the defined service in the existing history. Creates a new

history file if it does not exist yet.

• void newBreach(java.lang.String date, java.lang.String serviceId,

org.json.simple.JSONObject slaBreach) - Create a new SLABreach object and add it

to the defined dated deployment of the defined service in the existing history. Creates a new

history file if it does not exist yet.

• void pullRepo() - Pull new changes from the defined repository and includes them in

the local directory.

• void pullRepoWithCred() - Pull new changes from defined repository which is private

and include them into the local directory.

• void pushRepo() - Push new content to the repository.

• void pushRepoWithCred() - Push new content to the private repository.

• void setApplicationDesc(java.lang.String applicationDesc) - set the

Application Description.

• void setDirectory(java.lang.String directory) - set the local directory to

commit to

• void setGitRepository(org.eclipse.jgit.api.Git gitRepository)- set the

git repository itself

• void setRepositoryUrl(java.lang.String repositoryUrl) - set the git

repository URL

• void setUsername(java.lang.String username) - set the user name for

accessing the git repository.

• void writeHistory(java.lang.String serviceId, java.lang.String

serviceProvider) - Create a new history entry in the existing history. Gets the current

history file or creates a new one if it doesn’t exist.

It is important to note that the method newBreach accepts a JSONObject as the “sla breach”. With

this approach, the Application Controller library is independent by any other implementations (e.g.
OPTMUS) and does not need to define any specific parameters to be supplied. The viability of this
approach will be investigated in the coming months, in the DECIDE integration phase.

2.2.2 JSON for Deployment History

The history file is written in a JSON serialisation, the fields are listed in Table 2. The file is made up of
an array of microservices and their nested history.

Table 2. Fields in a Deployment History JSON-based file

Key Nested Elements Type Description

UUID of
microservice

 Array of deployment
history

UUID of the microservice as in
the Application Description

 Date String The system date at the time of
registering the breach or just
the deployment configuration.

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 15 of 19

www.decide-h2020.eu

Key Nested Elements Type Description

 deployed_on String UUID of the CSP the
microservice is deployed on

 sla_breaches Array of sla breaches
(JSONObjects)

Types and values for a breach.
Serialisation currently left open
for developers.

The following JSON description is an example of a deployment history file with an application consisting
of two microservices, which are deployed and have suffered SLA breaches.

As breaches come in, they are added to their respective microservice entry in the JSON file under
“sla_breaches”. New deployments are added as a new deployment configuration under the respective
microservice.

[{

 "Microservice2":[{

 "date":"1510152532949",

 "deployed_on":"AWS",

 "sla_breaches":[

 {“availability":"80%"},

 {"connectivity":"80%"}

]}

]},

 {

 "Microservice1":[{

 "date":"1510152815583",

 "deployed_on":"Azure",

 "sla_breaches":[

 {"availability":"50%"}

]}

] }]

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 16 of 19

www.decide-h2020.eu

3 Delivery and Usage

3.1 Package Information

The deliverable contains two folders and the prebuilt JAR file. The documentation folder holds the Java
Doc files and this document itself. The source-code folder contains the implementation of the
Application Controller and holds all necessary files to compile and build the library.

The source code for the Application Controller is organised under the following Java packages:

• eu.DECIDEh2020.appcontroller

contains the class AppController which includes all necessary methods and functions to create
and maintain the JSON based deployment history.

3.2 Build Instructions

The code is currently available on DECIDE’s Public GITLAB.
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/AppController

The project uses MAVEN as a build tool. In order to build the library both MAVEN and JAVA version 8
have to be installed. To build the JAR file execute the following command:

$> mvn clean package

3.3 Library Usage

The Application Controller may be used as a normal JAR file to be integrated in other components of
the DECIDE framework. The library can be added to your projects and offers all needed methods in
order to be able to create the JSON History file with its related content, push it to a git repository and
pull it when needed.

The most up-to-date documentation of the methods, their parameters and return values can be found
in the JavaDoc.

3.4 Licensing Information

The source code is licensed under the Eclipse Public License version 2.0.

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/AppController

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 17 of 19

www.decide-h2020.eu

4 Conclusions

In conclusion, a small library was implemented to write and update a deployment history of all (micro)
services the DECIDE framework is deploying.

The history file created by the Application Controller library can be accessed programmatically via a git
repository in order for OPTIMUS to avoid suggesting deployment topologies that previously have had
SLA breaches by the CSP.

The library has been described from a functional and technical perspective in order for developers to
understand its role in the project and how to integrate it and use it. A simple JAR file is to be added as
a library to projects.

It is important to note that the description of the Application Controller in the DoA [3] and it is
envisioned functionality have been conceptualised and its solutions have been introduced in various
components and parts of the DECIDE Framework.

The DoA states “Once the DECIDE Optimus tool has suggested the most convenient deployment
configuration based on the requirements elicited by the user, it is time to select which deployment script
is the selected one. The DECIDE application controller has a double aim. Firstly, it will apply the
necessary annotations in the source code at component and micro-service level in order to be read by
the deployment engine as well as for the self-adaptive tools to be developed in T4.1 and will then create
apply the corresponding deployment scripts. Standards such as CIMI, ISO 19941, ISO 19944, OASIS
TOSCA, etc. have to be supported, depending on available interfaces at the target CSPs. Hence, a
specific interface will allow to plug-in adaptors to translate topology and configuration information
into the respective target formats. The second aim of this controller is to hold the intelligence of the
different deployment configurations that the multi-cloud application has had in its operation time.
Storing these deployment configurations will allow avoiding those configurations that resulted
problematic in terms of security, performance or legal awareness.” [3].

The following table summarises the T3.4 task’s output as described in the DoA and gives insight on
how they have been addressed at this stage of the project.

Table 3. Application Controller Tasks

Task Implementation Explanation

Apply necessary annotations
in source code

 Subject to talks and considerations in Year2

Create and apply the
corresponding deployment
scripts

Not applicable Script generation has been moved to
ADAPT. As explained in D4.1 [4], the
deployment configuration scripts are
dependent on the technology selected for
the ADAPT implementation.

Support of standards Subject to talks and considerations in Year2

Plug-in Adapters to translate
topologies

Not applicable Script generation has been moved to
ADAPT. As explained in D4.1 [4], the
deployment configuration scripts are
dependent on the technology selected for
the ADAPT implementation

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 18 of 19

www.decide-h2020.eu

Task Implementation Explanation

Hold intelligence wrt. different
deployment configurations

Implemented as a
Java Library

Documented in this deliverable

http://www.decide-h2020.eu/

D3.10 – Initial multi-cloud native application controller Version 1.0 – Final. Date: 27.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 19 of 19

www.decide-h2020.eu

References

[1] DECIDE Consortium, "DECIDE Annex 1 - Description of Action," 2016.

[2] JGIT. [Online]. Available: https://www.eclipse.org/jgit/.

[3] „JSON.Simple,“ [Online]. Available: https://github.com/fangyidong/json-simple.

[4] DECIDE Consortium, „D4.1 Initial DECIDE ADAPT Architecture,“ 2017.

http://www.decide-h2020.eu/

	Table of Contents
	List of Figures
	List of Tables
	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable

	2 Implementation
	2.1 Functional description
	2.1.1 Fitting into overall DECIDE Architecture

	2.2 Technical description and specification
	2.2.1 Application Controller Operations
	2.2.2 JSON for Deployment History

	1.
	3 Delivery and Usage
	3.1 Package Information
	3.2 Build Instructions
	3.3 Library Usage
	3.4 Licensing Information

	4 Conclusions
	References

