
D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 1 of 35

www.decide-h2020.eu

Deliverable D3.13

Initial multi-cloud native application composite CSLA definition

Editor(s): Majid Salehi Ghamsari, Lena Farid

Responsible Partner: Fraunhofer

Status-Version: Final – v1.0

Date: 30/11/2017

Distribution level (CO, PU): CO

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 2 of 35

www.decide-h2020.eu

Project Number: GA 726755

Project Title: DECIDE

Title of Deliverable:
D3.13 Initial multi-cloud native application composite CSLA
definition

Due Date of Delivery to the EC: 30/11/2017

Workpackage responsible for the
Deliverable:

WP3 - Continuous Architecting

Editor(s): Fraunhofer

Contributor(s): Majid Salehi Ghamsari, Lena Farid (Fraunhofer)

Reviewer(s): Marisa Escalante (TECNALIA)

Approved by: All Partners

Recommended/mandatory readers: WP5, WP4, WP2

Abstract: This software deliverable will comprise the initial version of
a tool to derive composite SLAs from elementary ones. For
this, a description formalism will be defined and extended
if needed. Range definition for SLA metric values,
composition and matching rules will be defined and
implemented.

Keyword List: MCSLA, SLA, SLO, SQO, Editor, Multi Cloud,

Licensing information: The software is licensed under the Eclipse Public License
version 2.0

The document itself is delivered as a description for the
European Commission about the released software, so it is
not public.

Disclaimer This deliverable reflects only the author’s views and views
and the Commission is not responsible for any use that may
be made of the information contained therein

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 3 of 35

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 21/08/2017 First draft version TOC and MCSLA data
model

FHG

V0.2 21/11/2017 Second draft version, section 3 functional
architecture

FHG

V0.3 22/11/2017 Third version, section 3.2 technical
description

FHG

V0.4 24/11/2017 4th version, included section MCSLA
Concept and Aggregation patterns

FHG

V0.5 25/11/2017 5th version, introduction, conclusion and
completed section 4 and 3.2

FHG

V0.6 25/11/2017 Internal quality assurance review TECNALIA

V0.7 26/11/2017 Review comments addressed FHG

V1.0 26/11/2017 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 4 of 35

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 5

List of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 MCSLA Concept ... 9

2.1 Make up of a MCSLA ... 9

2.2 SLA Aggregation Patterns .. 10

2.2.1 SLA Aggregation Patterns for Availability .. 12

3 Implementation ... 15

3.1 Functional description ... 15

3.1.1 Fitting into overall DECIDE Architecture ... 16

3.2 Technical description ... 16

3.2.1 Prototype Architecture .. 16

3.2.2 Technical Specification .. 19

3.2.2.1 MCSLA Frontend .. 19

3.2.2.2 MCSLA Editor Backend .. 20

3.2.2.3 MCSLA Data Model .. 21

4 Delivery and usage .. 28

4.1 Package information ... 28

4.2 Configuration and Installation instructions ... 28

4.2.1 MCSLA Editor (Frontend) ... 28

4.2.1.1 MCSLA Editor UI configuration .. 28

4.2.1.2 Build the UI .. 28

4.2.1.3 Install and Run ... 29

4.2.2 MCSLAService (Backend) ... 29

4.2.2.1 MCSLAService Configuration ... 29

4.2.2.2 Build the MCSLAService ... 30

4.2.2.3 Install and Run ... 30

4.3 User Manual .. 30

4.4 Licensing information .. 32

4.5 Download .. 33

5 Conclusions .. 34

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 5 of 35

www.decide-h2020.eu

5.1 Future work ... 34

References ... 35

List of Figures

FIGURE 1. CONCEPTUAL IDEA – MAKE UP OF AN MCSLA ... 10
FIGURE 2. TERM COMPOSITION USING AGGREGATION PATTERNS [2] ... 11
FIGURE 3. BASIC MULTI-CLOUD DEPLOYMENT TOPOLOGY ... 12
FIGURE 4. MULTI-CLOUD REPLICATION DEPLOYMENT TOPOLOGY .. 13
FIGURE 5. DIFFERENT VENDORS TOPOLOGY .. 14
FIGURE 6. COMPONENT DIAGRAM FOR MCSLA EDITOR ... 17
FIGURE 7. SEQUENCE DIAGRAM FOR CREATING AN MCSLA .. 18
FIGURE 8. MCSLA FRONTEND PROTOTYPE IMPLEMENTATION M12 .. 19
FIGURE 9. MCSLA SERVICE BACKEND PROTOTYPE IMPLEMENTATION M12 ... 20
FIGURE 10. MCSLA DATA MODEL ... 21
FIGURE 11. MCSLA EXAMPLE IN JSON FORMAT .. 27
FIGURE 12. MCSLA EDITOR UI IN ACTION ... 29
FIGURE 13. MCSLA BACKEND IN ACTION .. 30
FIGURE 14. PATH TO THE PROJECT REPOSITORY AND THE USER NAME ... 31
FIGURE 15. UI CREATE NEW MCSLA .. 31
FIGURE 16. SELECT SLO/SQO/AG AND PUT IN THE MCSLA .. 32
FIGURE 17. EDIT MCSLA PROPERTIES ... 32
FIGURE 18. BUTTON TO SAVE MCSLA .. 32

List of Tables

TABLE 1. FUNCTIONALITY COVERED IN M12 IN RELATIONSHIP TO THE ELICITED REQUIREMENTS 15
TABLE 2. REST INTERFACES PROVIDED BY THE BACKEND -V1 .. 21
TABLE 3. APPLICATION DESCRIPTION MODEL FOR MONITORING THE APPLICATION VIA ITS MCSLA (NESTED ELEMENTS FOR

“APP_MCSLA”) .. 22
TABLE 4. NESTED ELEMENTS FOR MICROSERVICE_SLAS ... 22
TABLE 5. NESTED ELEMENTS FOR MICROSERVICE_SLO AND MICROSERVICE_SQO .. 22
TABLE 6. NESTED ELEMENTS FOR VIOLATIONTRIGGERRULE .. 23
TABLE 7. NESTED ELEMENTS FOR REMEDY .. 23
TABLE 8. MCSLA METRIC DATA MODEL FOR MONITORING .. 24
TABLE 9. NESTED ELEMENTS FOR EXPRESSION .. 25
TABLE 10. NESTED ELEMENTS FOR PARAMETER .. 25
TABLE 11. NESTED ELEMENTS FOR RULE .. 26

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 6 of 35

www.decide-h2020.eu

Terms and abbreviations

API Application Programming Interface

CRUD Create, read, update, delete

CSP Cloud Service Provider

EC European Commission

IaaS Infrastructure as-a-Service

JSON JavaScript Object Notation

KR Key Result

MCSLA Multi-cloud application service level agreement

PaaS Platform-as-a-Service

QoS Quality of Service

REST Representational State Transfer

SaaS Software as-a- Service

SLA Service Level Agreement

SLO Service Level Objective

SQO Service Qualitative Objective

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 7 of 35

www.decide-h2020.eu

Executive Summary

The MCSLA Editor plays a vital role in the DECIDE project as it defines the agreement between the
multi-cloud native application developer and the end-user of the app services. Furthermore, it is in a
standards-based machine-readable form that allows for other DECIDE tools such as ADAPT to monitor
the application and assess whether the expected QoS is guaranteed.

The document at hand describes the very first version of the prototype and the representation of the
machine-readable MCSLA definition. The prototype includes a backend and frontend that
communicate via a RESTful interface. The prototype allows developers to define in a graphical way the
MCSLA.

The document also describes the conceptual work done for the MCSLA. This includes the makeup of
the MCSLA and its properties. Furthermore, the functional and technical properties of the prototype
are laid out along with the build and installation instructions. A user manual is added to the document
to explain the usage of the user frontend.

In the next version of the prototype of the MCSLA Editor will be integrated into the DevOps Framework
and will include more functionality, such as support for more aggregation patterns as well as be
connected to the interfaces of ACSmI.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 8 of 35

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

The document at hand represents the documentation for the prototype delivered at M12 for the task
T3.5 Multi-cloud native application composite SLA description. It also presents concepts that have
been defined within this task for the MCSLA definition.

1.2 Document structure

This document is divided into four main sections. Section 2 presents the MCSLA concept defined in
the project. It describes the makeup of an MCSLA, its properties and the Aggregation Patterns for the
different deployment topologies. Section 3 describes the implementation details from a functional
and technical perspective and section 4 describes the build and installation instructions as well as the
user manual for using the tool.

Finally, at the end of the document section 5 concludes on the outcome of M12 and presents future
work to be done.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 9 of 35

www.decide-h2020.eu

2 MCSLA Concept

It is defined in the DECIDE project that once the multi-cloud native application is implemented and is
ready for deployment, i.e. the most optimal deployment topology has been selected; an MCSLA has to
be defined. The purpose of the MCSLA is twofold i) it acts as the contract between the end-users and
the developer of the multi-cloud native application and ii) it is used for monitoring purposes by ADAPT
and will be assessed in runtime to ensure it is being accomplished.

In order for the latter to be realised the task T3.5 of WP3 is responsible for implementing the following
two main points:

1. Enable the seamless composition of an MCSLA via an Editor. This should also support the
composition of MCSLAs when an application is self-adapted to a new deployment topology.

2. Define a standards-based machine-readable format for an MCSLA in order to be processed by
the DECIDE tools.

2.1 Make up of a MCSLA

The accumulation of a number of SLAs from different CSPs is defined in the DECIDE project as a multi-
cloud native application composite SLA (MCSLA).

A cloud SLA is typically composed of a number of Service Qualitative Objectives (SQO) and Service Level
Objectives (SLO) as defined in ISO/IEC 19086-1 [1]. The SLOs and SQOs represent, among others, the
non-functional requirements of an application and its underlying infrastructure. We will refer to them
as terms.

In the multi-cloud context, the deployment of the micro services of an application takes place on
several CSPs. Each CSP contracted shares with the developer an SLA that guarantees an expected
quality of service (QoS). Therefore, in a multi-cloud deployment scenario there will be at least two of
these agreements. These agreements might differ in their content but might also include same terms
(SLOs or SQOs) but with different values.

An MCSLA must therefore act as an aggregator of all terms defined in the various SLAs. If a term occurs
in several different SLAs, the values of the term must be aggregated (based on defined mathematical
functions). For example, if the SLO Availability occurs in one SLA with a value of 99% and in another
with a value of 99%. Then the MCSLA should contain the SLO Availability with the value of 98% (formula
is presented in Section 2.2). This is in essence the maximum value for availability that the developer
may offer to the end-user, as it is not guaranteed that an outage would take place across all
microservices (or CSPs for that matter) at the same time.

Concerning end-users, the developer may also define application specific terms. These additional
terms pertain to the application, are consumer-oriented and not derived from the CSP SLAs. These can
be terms the developer needs monitored and/or agreed with the end-user. An example would be the
application’s response time.

Furthermore, it is important for the MCSLA to reflect the diversity in the contracted SLAs on CSP level
and the system hierarchy (IaaS, SaaS) – these need to be consolidated.

Moreover, a SLA term can be hard or soft. This is important for monitoring purposes. Hard terms are
to be observed at all time, those declared as soft do not pose a major risk.

Another aspect concerning an MCSLA is re-deployment. Once an MCSLA has been set and
communicated to the end-user, certain terms should not be changed. A solution would be to define
two layers: an external one, which has to be respected and cannot be changed when a re-deployment
should take place, and an "internal" one that collects the SLAs from the various providers where the

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 10 of 35

www.decide-h2020.eu

application has been or will be deployed. The external SLA is a composition of the SLAs in the internal
part, plus the application SLOs. In case of a candidate redeployment involving different services or
CSPs, the internal SLAs change accordingly, but their composition should still satisfy the external SLA
for the candidate to be acceptable. If no such candidate exists, the adaptation (i.e. re-deployment)
fails.

Figure 1. Conceptual Idea – Make up of an MCSLA

2.2 SLA Aggregation Patterns

In a multi-cloud deployment scenario, a minimum of two microservices are expected to be deployed
on different CSPs or on different cloud services of the same CSP. In this case, there will be at least two
SLAs contracted for the developer of the multi-cloud native application. As previously stated, these
agreements might differ in their content but might include the same terms (SLOs) but with different
values.

In order to reduce the complexity of managing a multitude of CSPs, SLAs Aggregation Patterns
complemented with an aggregation engine are needed.

An SLA Aggregation Pattern [2] is a mathematical function that computes several terms into one
aggregated term.

In [2], they introduce a type which extends the WS-Agreement [3] specification, which labels specific
SLA terms with a type in order to be able to calculate and help automate the SLAs.

As the DECIDE project is not following the WS-Agreement specification but ISO/IEC 19086 1 (parts 1-4)
[1, 4, 5, 6], it may result fruitful to check if such a type is also required there. In any case, these types

1 Part 2 and 4 are still under development.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 11 of 35

www.decide-h2020.eu

can also be internally depicted in ACSmI and the MSLA Editor. This will be investigated in the coming
iteration of this task.

In [2] seven Aggregation Patterns are defined as types2

𝑇𝑦𝑝𝑒𝑠 = {𝑠𝑢𝑚𝑡𝑦𝑝𝑒, 𝑚𝑎𝑥𝑡𝑦𝑝𝑒, 𝑚𝑖𝑛𝑡𝑦𝑝𝑒, 𝑛𝑒𝑡𝑢𝑟𝑎𝑙, 𝑂𝑅𝑡𝑦𝑝𝑒, 𝐴𝑁𝐷𝑡𝑦𝑝𝑒, 𝑋𝑂𝑅𝑡𝑦𝑝𝑒}

Figure 2. Term composition using Aggregation Patterns [2]

Figure 2 depicts the aforementioned types, the following three types are relevant in DECIDE context:

The sumtype function (denoted as ∑ in Figure 2) defined as

 sumtype ∈ Types(⇔ sumtype : P(Terms) → Terms)

sumtype(term1, ...termn) = _n i=1 termi.terms.value

can be used to calculate terms for storage space, memory, availability and cost in a deployment
environment where all microservices are deployed on the same machine. Moreover, it assumes that
all microservices will fail simultaneously, which is rarely the case. Therefore, it makes sense to extend
this list with an additional type to fulfil DECIDE’s needs in a multi-cloud context.

The minType function defined as

mintype ∈ Types(⇔ mintype : P(Terms) → Terms)
mintype(term1, ...termn) = minni=1 termi.terms.value

is an aggregation function that aggregates a number of terms into one term. The minimum of these
terms is picked up and ultimately represents the aggregation of the input terms. Therefore, the only
term having the minimum value will contribute to the final term in the MSCLA. A good example is given
in [2], which is that for the bandwidth: “In a sequence of activities the activity pertaining to the
minimum bandwidth will become the bottleneck for the whole sequence making other activities with
higher bandwidth ineffective.” [2]

2 For the full formalisation please see [2]

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 12 of 35

www.decide-h2020.eu

The ORType function defined as

ORtype ∈ Types(⇔ ORtype : P(Terms) → P(Terms)
ORtype(term1, ...termn) = _ni=1 termi.terms.value

ORtype is an aggregation function that aggregates a number of terms into one or more terms. It does
so by applying a logical OR function on these terms and the result represents the aggregation of all the
input terms. For instance, an application developer who wants to aggregate services of varying
qualities but would also like to segregate them under different levels of SLAs, may use the ORtype
aggregation function to fulfil his needs.

An example could be a reseller who buys computational resources of different speeds and qualities
from different vendors and aggregates them using ORtype function so that later, he can offer SLAs of
different levels such as gold, silver or bronze, etc. to its consumers. This might prove interesting for
developers and will be investigated how it is optimally used in the project.

2.2.1 SLA Aggregation Patterns for Availability

In this section, we look at how to use these Aggregation Patterns for the NFR availability. The following
patterns also take into consideration the different deployment topologies. In the next iteration of this
deliverable, more Aggregation Patterns will be presented.

Availability is probably the most important single metric that can be used to measure the performance
of a service. It shows the time or percentage the service is operational and responding.

The following section gives examples using the three selected Aggregation Patterns for Availability.

Aggregated availability the sumType pattern in a basic multi-cloud environment

This example (see Figure 3) for availability includes a web site, a SQL database and table storage. The
deployment has taken place on three different CSPs. For the application to function as intended, each
of these components must be working. They also each have a 99.9% availability guaranteed in their
SLA. It cannot be assumed that the components will fail simultaneously, but at different times. This
means that the summation of all terms using the sumType function described above is insufficient and
would yield a false value for Availability.

Figure 3. Basic multi-cloud deployment topology

Therefore, we find it necessary to extend the list of types presented above with the following function
to be applied for this deployment topology:

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 13 of 35

www.decide-h2020.eu

𝑚𝑐𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡𝑒𝑟𝑚1, … 𝑡𝑒𝑟𝑚𝑛) = 100% − (∑(100% − 𝑡𝑒𝑟𝑚𝑖))

𝑛

𝑖=1

The function takes a number of terms and creates a sum of the “unavailability” of all terms and deducts
it from the optimal value for availability.

Example result would be as follows:

𝑚𝑐𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(99,9%, 99,9%, 99,9%) = 99,7%

Aggregated availability the MINtype pattern in replication deployment topology

In this example for availability, we have a web site, which is replicated on one CSP in different Regions.

Figure 4. Multi-cloud replication deployment topology

In this example, it is only viable to select the minimum term value based on the deployment topology.
Otherwise, the availability term in the MCSLA would be false as it cannot be guaranteed.

The function to be applied for this deployment topology is as follows:

𝑚𝑖𝑛𝑡𝑦𝑝𝑒(𝑡𝑒𝑟𝑚𝑖, … 𝑡𝑒𝑟𝑚𝑛) = Min
𝑖=1

𝑛 𝑡𝑒𝑟𝑚𝑖. 𝑡𝑒𝑟𝑚𝑠. 𝑣𝑎𝑙𝑢𝑒

Example result would be as follows:

𝑚𝑖𝑛𝑡𝑦𝑝𝑒(99,9%, 99,8%) = 99,8%

Aggregated SLAs uptime the ORtype pattern for service composition from different vendors

In this example, a generic database accesses two different SQL servers. One enjoys a 99,9% availability
and the other only 99,7% availability. The deployment as depicted in Figure 5 is across two different
CSPs.

The developer may include, as described before, different plans for the consumers (e.g. bronze, silver,
gold) and derive these from the different guaranteed quality for availability. Therefore, the developer

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 14 of 35

www.decide-h2020.eu

can choose which server is part of which plan by integrating the respective availability value in the
MCSLA.

Figure 5. Different vendors topology

The function to be applied for this deployment topology is as follows:

𝑂𝑅𝑡𝑦𝑝𝑒(𝑡𝑒𝑟𝑚1, … 𝑡𝑒𝑟𝑚𝑛) = ⋁
𝑖=1

𝑛 𝑡𝑒𝑟𝑚𝑖. 𝑡𝑒𝑟𝑚𝑠. 𝑣𝑎𝑙𝑢𝑒

Example result would be as follows:

𝑂𝑅𝑡𝑦𝑝𝑒(99,7%, 99,9%) = 99,9%

𝑂𝑅𝑡𝑦𝑝𝑒(99,7%, 99,9%) = 99,7%

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 15 of 35

www.decide-h2020.eu

3 Implementation

3.1 Functional description

The MCSLA Editor provides a tool for the authoring of an MCSLA to be used as a contract between the
end-user of the application and the application owner, i.e. developer. Furthermore, the MCSLA is
designed in a machine-readable format that describes means to monitor and measure the application’s
NFRs.

The main functionalities for the MCSLA Editor are as follows:

F1. Provides supportive means for the developer for the definition of the composite MCSLAs and
the corresponding SLOs of the application. This includes:

a. Aggregation of the available terms in the various contracted SLAs using defined
mathematical formulas mapped to deployment topologies.

b. Allowing for editing an existing MCSLA after a re-deployment is recommended whilst
respecting the initial SLA

F2. Provide an interactive user interface for authoring an MCLSA
F3. The MCSLA is translated into a standards-based machine-readable form that includes a metrics

definition.
F4. The MCSLA is translated into a human readable form.
F5. Maintain an interface to ACSmI for accessing the contracted SLAs
F6. Maintain access to the git repository of the Application.
F7. Storage of the MCSLA file in a git repository to be accessed by the different DECIDE tools.
F8. Integration of the MCSLA Editor in the DECIDE DevOps Framework.

The MCSLA Editor will be implemented incrementally. The first version (M12) includes the
functionalities F1 (partly), F2, F3, F4 (partly), F6, and F7. The improvements and finalisation of the
previous list of functionalities and the rest (F5 and F7) will be implemented in due course of the project,
as the MCSLA Editor is very dependent on the implementation of ACSmI and the DevOps Framework.
Moreover, the functionality will evolve during the course of the project. The next release will include
more detailed elements also from a usability perspective.

Table 1. Functionality covered in M12 in relationship to the elicited requirements

Functionality Req. ID Coverage

F1 WP3-CSLA-REQ1

The MCSLA Editor provides the model and CRUD functionality
for the file and the mechanism for storing and accessing the
MCSLA.
Aggregation rules will be integrated into the implementation in
Year2.

F2
WP3-CSLA-REQ10, WP3-
CSLA-REQ11

The MCSLA Editor is composed of a frontend and backend. The
frontend is a web-based tool.

F3
WP3-CSLA-REQ6, WP3-
CSLA-REQ7

The MCSLA definition is in machine-readable form and follows
the standard ISO/IEC 19086-(1-4) [1] [4].

F5 WP3-CSLA-REQ1

A dummy API has been implemented to facilitate the
dependency on ACSmI’s interfaces. The interfaces required by
the MCSLA Editor have been communicated to the relevant
parties in the project. The implementation is based on these
and holds a skeleton for accessing ACSmI’s API.

F6 WP3-CSLA-REQ1
All the mechanisms for accessing the git repository are in
place.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 16 of 35

www.decide-h2020.eu

Functionality Req. ID Coverage

F7 WP3-CSLA-REQ1
All the mechanisms for storing the MCSLA in the defined
application repository are in.

The following list compiles the implemented functionality in M12:

• The MCSLA editor has a web-based UI that allows the user to view all available SQOs and SLOs
and select from these terms the ones relevant for the Application. This is done via
Combo boxes and drag and drop functionality in the UI. The terms are based on a dummy API
and dummy content.

• The MCLSA frontend UI gives information for the user in identifying, where the terms come
from (which CSP).

• Any aggregated value of an SLA is removed entirely from the combo box and added to another
box specifically dedicated to aggregated terms. The used formula to calculate the value is
shown to the user for transparency reasons.

• The MCSLA Editor backend serves the UI and holds the model for the MCSLA, which is based
on the ISO/IEC19086-2.

• The MCSLA Editor can read and write to git and can store the MCSLA file in the target
application repository.

3.1.1 Fitting into overall DECIDE Architecture

The MSCLA editor is crucial for the DECIDE DevOps Framework as it is part of the continuous operation
phase and lays the foundation for monitoring the multi-cloud native application as well as the CSPs,
which may lead to imperative re-adaptation and re-deployment of the application.

Furthermore, it serves as an interface (UI) through which the developers specify the multi-cloud SLAs
agreed with the end-users of the application. The MCSLA editor provides the developer with all
possible SLOs and SQOs, which may partly incorporate default values, aggregated values or
overwritten values depending on those resulting from the contracted CSPs. This resulting MCSLA
serves as the contract between the developer and the end-users of the application.

The tool ADAPT is the main DECIDE tool that is dependent on the output of the MCSLA editor. But also,
the MCSLA editor is dependent on the ACSmI as it provides the initial set of SLAs that have been
contracted for a multi-cloud deployment scenario. When a re-deployment takes place another round
of interactions between the MCSLA editor and ACSmI is required.

Please see Figure 6. Component diagram for MCSLA Figure 6 for the interactions between the MCSLA
editor and the DECIDE tools.

3.2 Technical description

This section describes the technical details of the implemented software for the current prototype of
the MCSLA editor.

3.2.1 Prototype Architecture

The MSCLA Editor is a two-tier architecture represented by the MCSLA frontend and the backend
consisting of the MCSLAAggregator and the MCSLAManager. Figure 6 depicts the component diagram
for the MCSLA Editor.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 17 of 35

www.decide-h2020.eu

Figure 6. Component diagram for MCSLA editor

MCSLA Frontend

The MCSLA Frontend is a user-facing component that enables the users to create, read, update and
delete MCLSAs in a visual and human readable manner. The frontend will be integrated into the
DevOps Dashboard. The frontend communicates with the backend and uses defined REST interfaces
for accessing available SQOs and SLOs, aggregated values of SLAs as well as existing MCSLAs. Available
SLOs and SQOs are based on the ISO/IEC 19086 and cover terms that are application specific, rather
than just provider specific.

MCSLAManager

The MCSLA Manager is in charge of managing the MCSLA and holds its logical information model, it
communicates with the code git repository in order to access the Application Description and receive
the ids of the cloud services where the multi-cloud application is deployed on.

The MCSLA Manager uses this information from the Application Description to access cloud services
related information via the interfaces provided by ACSmI. This information is in turn used to identify
the SLAs (SLOs) that need to be aggregated and represented in the MCSLA.

Furthermore, the MCSLA Manager is in charge of storing a tagged version of the MCSLA in the code
repository for ADAPT to access and be able to monitor the application.

MCSLAAggregator

The MCSLA Manager serves the MCSLA Aggregator with the SLAs in order to accumulate and aggregate
the possible values for SLOs depending on the aggregation rules defined in the component.

For each deployment scenario detailed in the Application Description a specific aggregation rule is
specified and used to aggregate the values.

The following sequence diagram (Figure 7) depicts the communication and message exchange that
takes place between the MCSLA Editor components, external repositories and DECIDE tools (ACSmI).

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 18 of 35

www.decide-h2020.eu

Figure 7. Sequence diagram for creating an MCSLA

The sequences for creating a MCSLA are as follows:

1. The developer starts the MCSLA Frontend (GUI); this process calls the MCSLA Manager in order
to populate the frontend with the necessary values.

2. As long as the MCSLA editor as a whole is integrated into the dashboard, it is clear which
Application Description is applicable at this stage. The Application Description residing in a
repository will be accessed via the MCSLA Manager to retrieve the currently used deployment
topology, i.e. the cloud service Ids.

3. With the cloud service Ids, the MCSLA Manager contacts ACSmI in order to obtain the
contracted SLAs.

4. The MCSLA Manager then contacts the MCSLA Aggregator to take the necessary measures to
aggregate the SLOs defined in each SLA.

5. Once this step is completed, the MCSLA Manager populates the frontend with the available
SLO/SQOs and their possible values.

The developer then uses the GUI to create the MCSLA, which is in turn saved by the MCSLA Manager
in the code repository as well as registering it in the Application Description.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 19 of 35

www.decide-h2020.eu

3.2.2 Technical Specification

3.2.2.1 MCSLA Frontend

Figure 8. MCSLA Frontend prototype implementation M12

The MCSLA Frontend is implemented using the ZK Ajax Framework 8 [7]. The following are the
components implemented for the frontend:

- MCSLAModel: holds the logical representation of the MCSLA definition. The MCSLA frontend
shares the same data model as the backend to be able to interact with the services. The
following MCSLA parts are defined as specified by ISO/IEC 19086-2 [5]: Metric, Expression,
Parameter, Remedy, ViolationTriggerRule, UnderlyingMetricRef. The model also includes
other parts that are DECIDE specific these are: CSP, MCSLA, MicroservicesSLA,
MicroservicesSLO, and MicroservicesSQO. These data structure is described in detail in section
3.2.2.3.

- MCSLAContriguartion: The configuration holds the information regarding the DECIDE
application project repository in order to access the MCSLAService in the correct context.

- RESTClient: is a helper class for accessing the RESTful MCSLAService that provides the MCLSA
objects, CSP lists and SLA information.

- UI: holds the implementation of the user interface as a Single Page Application and implements
all the logic behind CRUD operations in a graphical way as well as the interactive user elements.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 20 of 35

www.decide-h2020.eu

3.2.2.2 MCSLA Editor Backend

Figure 9. MCSLA Service backend prototype implementation M12

MCSLAService backend consists of the MCSLAManager and MCSLAAggregator. The backend is
implemented with Spring framework version 3 [8] with Jersey 2.25.1 [9] for supporting RESTful web
services in Java. All web services return JSON as a format. The MCSLA backend is a dynamic project
using maven, Apache tomcat 8 and JDK 8. The following components are implemented:

- MCSLAService: is the main implementation of a RESTful interface that the backend provides.
It also includes the implementation for the Aggregation Patterns. This component operates on
an instance of the MCSLA from the git repository.

- RESTController: component defines the restful web services endpoint using Spring
Framework.

- MCSLAModel: holds the logical representation for the MCSLA definition. following MCSLA
parts are defined as specified by ISO/IEC 19086-2: Metric, Expression, Parameter, Remedy,
ViolationTriggerRule, UnderlyingMetricRef. The model also includes other parts that are
DECIDE specific these are: CSP, MCSLA, Microservices SLA, Microservices SLO, and
Microservices SQO. These data structure is described in detail in section 3.2.2.3.

- GitController: manages all interactions with the git decide application repository.
- MCSLAConfigurator: implements the functionality to manage the decide application projects.

It is supplied by properties such as repository URL, username and password.

The ACSmI RestClient if for accessing the ACSmI services. It will be implemented once the services
are available from ACSmI.

3.2.2.2.1 REST Interfaces
The backend provides the following operations described below in brief. Each operation produces and
consumes JSON. The interface documentation will be generated using OPEN API version 3 and available
online. The JSON structure can be viewed in section 3.2.2.3.1.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 21 of 35

www.decide-h2020.eu

Table 2. Rest interfaces provided by the backend -v1

HTTP Verb URL Description

GET /v1/mscla returns the current MCSLA from the Application Repository as an
application/json structure

GET /v1/mcslas returns all available MCSLAs as an application/json structure

GET /v1/mscslas/{id} returns an MCSLA with the given id as an application/json
structure

POST /v1/mcsla

Creates a new MCSLA in the application description

PUT /v1/mcslas updates existing MCSLA. Consumes ab appplication/json
structure as body

DELETE /v1/mcslas/{id} deletes MCSLA with the supplied id. Expects an id

POST /v1/aggregate Method to aggregate the SLOs, takes a list of SLOs as an
application/json structure

GET /v1/config

returns the configuration of the project

3.2.2.3 MCSLA Data Model

The data model for an MCSLA is depicted below in Figure 10 and serves as a reference

Figure 10. MCSLA Data Model

The following tables describe the MCSLA model for monitoring with a brief description for each field.
Table 3 describes the nested elements for the MCSLA. The MCSLA editor is responsible for eliciting this
information from the user.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 22 of 35

www.decide-h2020.eu

Table 3. Application description model for monitoring the application via its MCSLA (nested elements for
“app_mcsla”)

Element Name app_mcsla

Description General information about the MCSLA

attribute -or-
Element

Type
Multiplicity /
Default

Definition

id String 1 Unique Identifier for the MCSLA

description String 1 This is MCSLA description line.

visibility String 1 public or private

validityPeriod Integer 1 The validity period of the MCSLA in
days

microservice_SLAs Microservice_SLAs 1..* The list of SLAs for each microservice

The following Table 4 describes the fields nested in the microservice_SLAs field of the MCSLA.

Table 4. Nested elements for microservice_SLAs

Element
Name

Microservice_SLAs

Description The general information about the SLAs for each microservice

attribute -
or- Element

Type
Multipli
city /
Default

Definition

id String 1 Unique Identifier for the microservice_SLA

ms_id String 1 Unique Identifier of the microservice this SLA belongs to

csp_id String 1
Unique Identifier of the CSP from which the SLA comes
from

visibility String 1 public or private

validityPerio
d Integer 1

The validity period of the SLA in days, should not be
higher than that of the MCSLA

microservice
_SLO

microservice
_SLO 1..* List of microservice SLOs

microservice
_SQO

microservice
_SQO 1..* List of microservice SQOs

The following Table 5 describes the fields nested in the microservice_SLO and microservice_SQO fields
of microservice_SLAs.

Table 5. Nested elements for microservice_SLO and microservice_SQO

Element Name microservice_SLO and microservice_SQO

Description The general information about the slo or sqo defined for a microservice

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

id String 1
Unique Identifier for the
microservice_SLA

termName String 1
Name of the term to which it refers
to

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 23 of 35

www.decide-h2020.eu

value Integer 1
Term value that should not be
violated based on calculation formula

unit String 1 Term unit

comparisonOperator String 1
Comparison operator for monitoring
the SLO

violationTriggerRule ViolationTriggerRule 1 The violation Trigger Rule

remedy Remedy 0..1

The compensation available to the
cloud service customer in the event
the cloud service provider fails to
meet a specified cloud service level
objective

metrics Metrics 1..*
The definition of how to measure the
SLO or SLA

violation_report String
0..1 Indicates where to report violations

for this application (optional)

The following Table 6 describes the fields nested in the violationTriggerRule field of microservice_SLO
and microservice_SQO.

Table 6. Nested elements for ViolationTriggerRule

Element Name ViolationTriggerRule

Description The general information about the violation trigger rule

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

interval string 1
Indicates the monitoring frequency for
each SLO

breaches_count Integer 1
The count of how many breaches have
taken place

The following Table 7 describes the fields nested in the remedy field of microservice_SLO and
microservice_SQO.

Table 7. Nested elements for Remedy

Element Name Remedy

Description
The general information about the compensation available to the cloud service
customer in the event the cloud service provider fails to meet a specified cloud
service level objective

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

type String 1
The type of remedy the cloud service
provider will be offering the cloud service
customer

value Integer 1
The value of the type of remedy offered by
the cloud service provider

Unit String 1 The unit for the value offered

validity Integer 1 The validity period for this remedy

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 24 of 35

www.decide-h2020.eu

The following table holds the fields (taken directly from ISO/IEC 19086-2 Metric Model [5]) that are
nested within the metrics field of microservice_SLO and microservice_SQO. The MCSLA editor is
responsible for eliciting this information from the user.

Table 8. MCSLA Metric data model for monitoring

Element
Name

Metric

Description The general information about the metric

attribute -or-
Element

Type
Multipli
city /
Default

Definition

descriptor String 0..1 A short description of the metric

Id String 1 A unique identifier for the metric within a context

source String 1 The individual or organization who created the metric

scale enumera
tedList

1 Classification of the type of measurement result when
using the metric. The value of scale shall be “nominal,
ordinal, interval, or ratio”. SLOs shall use either the
“interval” or “ratio” scale. SQOs shall use the “nominal” or
“ordinal” scales.

note String 0..1 Additional information about the metric and how to use it.

category String 0..1 A grouping of metrics with similar expressions, rules, and
parameters

expression Expressio
n

0..1 The expression of the calculation of the metric and
supporting information. An SLO metric shall have an
expression while an SQO may or may not have an
expression (e.g., specified using natural language). It shall
be written using the ids to represent underlying metrics,
parameters, and rules.

parameters Paramet
er

0..* A parameter is used to define a constant (at runtime)
needed in the expression of a metric. A parameter may be
used by more than one metric if it is defined using a unique
ID within the set of metrics it is used in.

rules Rule 0..* A rule is used to constrain a metric and indicate possible
method(s) for measurement.

underlyingM
etrics

Metric 0..* A metric element that is used within an expression element
to define a variable. The expression shall use the
underlying metric id to reference the underlying metric
within the expression.

The following Table 9 describes the fields nested in the expression field of a Metric.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 25 of 35

www.decide-h2020.eu

Table 9. Nested elements for Expression

Element Name Expression

Description The expression of the calculation of the Metric and supporting information

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

Id String 1
A unique identifier (within the context of
the metric) for the expression

expression String 1
The expression statement written using
the ids to represent underlying metrics,
parameters, and rules.

expressionLanguage String 1
The language used to express the metric
(i.e. ISO80000 [10])

note String 0..1
Additional information about the
expression

unit String

0..1 Real scalar quantity, defined and adopted
by convention, with which any other
quantity of the same kind can be
compared to express the ratio of the two
quantities as a number.

required
when scale
is ratio or
interval

subExpression Expression 0..*

An associated element of type element
that is used within the expression to
define a variable. The expression shall use
the SubExpression id to reference the
SubExpression within the expression.

The following Table 10 describes the fields nested in the parameters field of a metric.

Table 10. Nested elements for Parameter

Element Name Parameter

Description
A Parameter is used to define a constant (at runtime) needed in the
expression of a Metric. A Parameter may be used by more than one Metric
if it is defined using a unique ID within the set of metrics it is used in.

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

id String 1 The unique identifier of the parameter

parameterStatement String 1 The statement or value of the parameter

unit String 1 The unit of the parameter

note String 0..1
Additional information about the
parameter

The following Table 11 describes the fields nested in the rules field of a Metric.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 26 of 35

www.decide-h2020.eu

Table 11. Nested elements for Rule

Element Name Rule

Description

A Rule is used to constrain a Metric and indicate possible method(s) for
measurement. For instance, an “AvailabilityDuringBusinessHour” Metric could
be defined with a scope that constrains some piece of a generic “Availability”
Metric element that limits the measurement period to defined business hours.
A Rule describes constraints on the metric expression. A constraint can be
expressed in many different formats (e.g. plain English, ISO 80000, SBVR)

attribute -or-
Element

Type
Multiplicity
/ Default

Definition

Id String 1 The unique identifier for the rule

ruleStatement String 1 A constraint on the metric

ruleLanguage String 1
The language used to express the rule in the
ruleStatement

Note String 0..1 Additional information about the rule

3.2.2.3.1 MCSLA JSON Example
MCSLA backend uses Gson Java library that can be used to convert Java Objects into their JSON
representation. It can also be used to convert a JSON string to an equivalent Java object. Gson is an
open-source project hosted at http://code.google.com/p/google-gson.

MCSLA Repo keeps all created MCSLA instances as object and persist these in JSON Format. Figure 11
shows one example of MCSLA in JSON format.

http://www.decide-h2020.eu/
http://code.google.com/p/google-gson

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 27 of 35

www.decide-h2020.eu

Figure 11. MCSLA example in JSON format

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 28 of 35

www.decide-h2020.eu

4 Delivery and usage

4.1 Package information

The MCSLA Frontend consists of the following packages:

• eu.DECIDEh2020.mcsla.beans contains the implementation Classes for model for the MCSLA
definition

• eu.DECIDEh2020.mcsla.editor.service contains the Interfaces and Implementation for parsing
the configuration information.

• eu.DECIDEh2020.mcsla.editor.dual_listbox contains the class DualListbox which implements
the UI as a Single Page Application

• eu.DECIDEh2020.mcsla.editor.data contains the class SlasData, a helper class to use the jersey
client to build the list of SLOs, SQOs and build the aggregated SLO.

• eu.DECIDEh2020.mcsla.configuration contains the classes for setting the configuration of the
decide project.

The MCSLAService Backend consists of the following packages:

• eu.DECIDEh2020.mcsla.beans contains the implementation Classes for model for the MCSLA
definition

• eu.DECIDEh2020.mcsla.service.service contains the main implementation of RESTful interface
the class MCSLAService. This class operates on instance to the MCSLA Repository.

• eu.DECIDEh2020.mcsla.service.controller contains the class MCSLAController which
implements the CRUD functionality for an MCSLA

• eu.DECIDEh2020.mcsla.service.git contains the class GitControl for accessing the git decide
application repository

• eu.DECIDEh2020.mcsla.service.configuration contains the classes for setting the configuration
of the decide project

4.2 Configuration and Installation instructions

4.2.1 MCSLA Editor (Frontend)

The MCSLA editor is also a dynamic project developed using the JAVA language and uses maven,
Apache tomcat 8 and JDK 1.8 in eclipse.

4.2.1.1 MCSLA Editor UI configuration

To use the REST web services of the MCSLAService backend you have to configure the UI first. Edit the
file decide.mcsla.editor\src\main\resources\application.properties and put the main URL to the
backend. Or you can provide this information in your user environment. The user environment has
highest priority.

decide.mcsla.srv=http://localhost:8080/decide.mscla.srv

4.2.1.2 Build the UI

The project is available via Git repository. Download the source code from here:
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/DevOpsFramework/M
CSLAEditor.

The project uses Maven as the build tool. So, the only thing to do is to call

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/DevOpsFramework/MCSLAEditor
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/DevOpsFramework/MCSLAEditor

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 29 of 35

www.decide-h2020.eu

$> mvn clean install

The pom.xml file contains all the required dependencies that the application needs. In order to build
the WAR file. You will find the WAR in the target directory.

4.2.1.3 Install and Run

Finally, deploy this application from target folder to a tomcat server and run it.

Once the application is deployed go to http://localhost:8080/decide.mcsla.editor/. When you run the
application, you will get the following output as depicted in Figure 12. MCSLA Editor UI in action

Figure 12. MCSLA Editor UI in action

4.2.2 MCSLAService (Backend)

4.2.2.1 MCSLAService Configuration

The current implementation of the MCSLAService (backend) needs to set a couple of configuration
elements. These can be set in the user environment in the file
decide.mcsla.editor\src\main\resources\application.properties ”. The user environment has highest
priority. In subsequent versions of the project the configuration of the MCSLAService will be moved to
the DevOps dashboard. The information needed is as follows:

The service needs the git remote path, user and password to your project. Where your Application
Description DECIDE.json is located.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 30 of 35

www.decide-h2020.eu

Logging.level.com.concretepage=INFO
App.git.remote-path=https://gitlab/user/decide.git
App.git.user-name=decideuser
App-git.user-password=decidepassword

4.2.2.2 Build the MCSLAService

The project is available via Git repository. Download the source code from
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/DevOpsFramework/M
CSLAService.

The project uses Maven as the build tool. So, the only thing to do is to call

$> mvn clean install

The pom.xml file contains all the required dependencies that the application needs. In order to build
the WAR file. You will find the WAR in the target directory.

4.2.2.3 Install and Run

Finally, deploy this application from target folder to a tomcat server and run it.

Once the application is deployed go to http://localhost:8080/decide.mcsla.srv/. When you run the
application, you will get the following output. These are GET methods that you can call within your
browser without any REST client. Just click the methods.

Figure 13. MCSLA backend in action

4.3 User Manual

1. Create new MCSLA will load SLAs pertaining to current deployment configuration and provide
an empty MCSLA skeleton.

2. In the UI, the users can see the path to the project repository and the user name. This path
can be changed in the MCSLA backend configuration (See Section 4.2.2.1).

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/DevOpsFramework/MCSLAService
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/DevOpsFramework/MCSLAService

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 31 of 35

www.decide-h2020.eu

Figure 14. Path to the project repository and the user name

3. Aggregate SLO/SQO box is populated with the aggregated values, those that are not
aggregated are found in the SQO/SLO boxes with a source field/value. SQO/SLO boxes are
controlled lists and hold all possible/supported SQO/SLOs. SLO/SQOs defined already in a CSP's
SLA that is part of the deployment config and are not aggregates override their counterparts
in the controlled list.

Figure 15. UI Create new MCSLA

4. The user selects the relevant SLO/SQO /AG from left side and puts these in the list of MCSLA
SLO/SQO/AG at the right side.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 32 of 35

www.decide-h2020.eu

Figure 16. Select SLO/SQO/AG and put in the MCSLA

5. The user can edit also the description of MCSLA or change the visibility or other properties of
MCSLA in the editor. The MCSLA ID is created automatically and cannot be changed.

Figure 17. Edit MCSLA properties

6. Last step is to save the MCSLA in Application Description. Use “Save” button.

Figure 18. Button to Save MCSLA

The end result is a JSON structure integrated in the Application Description file “DECIDE.json” in your
project repository under attribute app_mcsla, see Figure 11 for an example.

4.4 Licensing information

The source code is licensed under the Eclipse Public License version 2.0.

See https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

http://www.decide-h2020.eu/
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 33 of 35

www.decide-h2020.eu

4.5 Download

The source code is available in the EC portal for deliverables, included in the zip file for D3.13.

The first release is available in the DECIDE open git repository, more precisely at the following address:

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/DevOpsFramework

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/M12/DevOpsFramework

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 34 of 35

www.decide-h2020.eu

5 Conclusions

This document presented the MCSLA task and the outcome of several discussions and research. The
first outcome has been presented in Section 2 of the document. The main points relevant for DEDICE
MCSLA definition are, among others:

• An MCSLA involves different SLOs and SQOs that can be declared as soft or hard and that
maintain an unchangeable external and changeable internal structure. The former must be
respected during a re-adaption and re-deployment of the application.

• In multi-cloud deployment scenarios SLAs must be aggregated, removing the complexity of
managing a multitude of SLAs from different CSPs

• Aggregation patterns are required.

A selection of aggregation patterns have been presented along with the proposition of a custom
aggregation pattern that fulfils our needs in terms of aggregating the availability of an application
dispersed across several CSPs or cloud services of different CSPs. An important aspect of this pattern
is that it takes into account that the dispersed microservice will most probably not fail
simultaneously, resulting in a lower availability value than that of an individual microservice.

Furthermore, the functional and technical description of the prototype is detailed. The prototype
consists of two main blocks, namely, the frontend and the backend. These components communicate
with one another using a restful interface and have been designed to be easily integrated into the
DevOps Framework.

The Data Model for the MCSLA has also been presented, it is based on the ISO/IEC 19086 [1] [5] [4]
[6] and includes a metric definition for each SLO in order to enable monitoring. An example JSON for
an MCSLA has also been given.

Finally, all information related to building, installing and using the prototype has been described in
section 4 of this document.

5.1 Future work

There is an important part of implementation work that will be included in the next iterations of the
prototype. The following is an excerpt of the open issues:

• Integration with ACSmI in order to replace the dummy API implementation with that from
ACSmI

• Integration with the DevOps Framework in order to have a holistic view on all tools and allow
the MCSLA tool to be configurable via the UI.

• Improvements to the UI

• Providing the MCSLA in a human readable form.

• Investigation of more aggregation patters for other NFRs, such as scalability.

Furthermore, regarding the conceptual work for the MCSLA task, the following needs to be
investigated in the future:

• Hierarchical structures of SLAs due to sub-contracting and how that affects our
implementation.

• Consideration regarding developing an implementation of the ISO/IEC 19086 separate from
the tools, as a library to be integrated in different projects

• Inclusion of the types defined in section 2 into the ACSmI or MSCLA Editor.

http://www.decide-h2020.eu/

D3.13 – Initial multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 35 of 35

www.decide-h2020.eu

References

[1] International Standards Organisation, “ISO/IEC 19086-1: Information technology -- Cloud
computing -- Service level agreement (SLA) framework -- Part 1: Overview and Concepts,” 2016.

[2] I. Ul Haq and E. Schikuta, “Aggregation Patterns of Service Level Agreements,” FIT '10 8th
International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 2010.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S.
Tuecke and M. Xu, “Web Services Agreement Specification (WS-Agreement),” Open Grid Forum.

[4] International Standards Organisation, “ISO/IEC 19086-3: Information technology -- Cloud
computing -- Service level agreement (SLA) framework -- Part 3: Core conformance
requirements,” 2017.

[5] International Standards Organisation, “ISO/IEC 19086-2:Information technology -- Cloud
computing -- Service level agreement (SLA) framework -- Part 2: Metric model,” 2017.

[6] International Standards Organisation, “ISO/IEC 19086-4: Information technology -- Cloud
computing -- Service level agreement (SLA) framework -- Part 4: Security and privacy,” 2017.

[7] “ZK Framework,” [Online]. Available: https://www.zkoss.org/product/zk/zk8. [Accessed 26
November 2017].

[8] “Spring Framework,” [Online]. Available: https://projects.spring.io/spring-framework/.
[Accessed 26 November 2017].

[9] “Jersey - RESTful Web Services in Java,” [Online]. Available: https://jersey.github.io/. [Accessed
26 November 2017].

[10] International Standards Organisation, “Standards catalogue - ISO/TC2 - Quantities and units,”
[Online]. Available: https://www.iso.org/committee/46202/x/catalogue/. [Accessed 26 11
2017].

http://www.decide-h2020.eu/

	Table of Contents
	List of Figures
	List of Tables
	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 MCSLA Concept
	2.1 Make up of a MCSLA
	2.2 SLA Aggregation Patterns
	2.2.1 SLA Aggregation Patterns for Availability

	3 Implementation
	3.1 Functional description
	3.1.1 Fitting into overall DECIDE Architecture

	3.2 Technical description
	3.2.1 Prototype Architecture
	3.2.2 Technical Specification
	3.2.2.1 MCSLA Frontend
	3.2.2.2 MCSLA Editor Backend
	3.2.2.2.1 REST Interfaces

	3.2.2.3 MCSLA Data Model
	3.2.2.3.1 MCSLA JSON Example

	4 Delivery and usage
	4.1 Package information
	4.2 Configuration and Installation instructions
	4.2.1 MCSLA Editor (Frontend)
	4.2.1.1 MCSLA Editor UI configuration
	4.2.1.2 Build the UI
	4.2.1.3 Install and Run

	4.2.2 MCSLAService (Backend)
	4.2.2.1 MCSLAService Configuration
	4.2.2.2 Build the MCSLAService
	4.2.2.3 Install and Run

	4.3 User Manual
	4.4 Licensing information
	4.5 Download

	5 Conclusions
	5.1 Future work

	References

