
D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 1 of 39

www.decide-h2020.eu

Deliverable D3.4

Initial profiling and classification techniques

Editor(s): María José López

Responsible Partner: TECNALIA

Status-Version: Final – v1.0

Date: 30/11/2017

Distribution level (CO, PU): PU

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 2 of 39

www.decide-h2020.eu

Project Number: GA 731533

Project Title: DECIDE

Title of Deliverable: Initial profiling and classification techniques

Due Date of Delivery to the EC: 30/11/2017

Workpackage responsible for
the Deliverable:

WP3 - Continuous Architecting

Editor(s): TECNALIA

Contributor(s):

Maria Jose Lopez, Juncal Alonso, Gorka Benguria, Marisa
Escalante, Leire Orue-Echevarria (TECNALIA), Lena Farid,
Majid Salehi, Simon Dutkowski (Fraunhofer), Antony
Shimmim (AIMES)

Reviewer(s): Lorenzo Blasi (HPE)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5

Abstract: This deliverable comprises the actual models for CSPs,
topology/configuration models using TOSCA, and models
for prototypical application components.

Keyword List: Modelling, standard, classification, profiling

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and the
Commission is not responsible for any use that may be
made of the information contained therein

http://www.decide-h2020.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 3 of 39

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 13/02/2017 ToC TECNALIA

v0.2 10/10/2017 First SOTA and application properties TECNALIA

V0.3 16/10/2017 First draft TECNALIA

V0.4 02/11/2017 Modifications proposed by FOKUS TECNALIA

V0.5 06/11/2017 Tecnalia internal review TECNALIA

V0.6 13/11/2017 Modifications to FOKUS revision TECNALIA

V0.7 20/11/2017 Modifications to HPE revision TECNALIA

V0.8 21/11/2017 Modifications to HPE second revision TECNALIA

V1.0 22/11/2017 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 4 of 39

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 5

List of Tables .. 6

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction ... 9

1.1 About this deliverable ... 9

1.2 Document structure .. 9

2 Analysis of CSP and multi-cloud applications modelling and describing languages 11

2.1 TOSCA .. 11

2.2 CloudML .. 12

2.3 CAMEL ... 13

2.4 Comparison ... 15

3 Modelling applications .. 17

4 Modelling configurations .. 19

5 Modelling cloud services ... 21

6 DECIDE OPTIMUS classification tool .. 23

6.1 Profiling components .. 23

6.2 Components classification of standard multi-cloud applications ... 24

6.3 Tool description ... 25

6.4 Tool requirements and design .. 25

7 Classifying a specific application ... 29

8 Conclusions .. 34

References ... 35

APPENDIX I - CAMEL Application Description ... 37

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 5 of 39

www.decide-h2020.eu

 List of Figures

FIGURE 1. MAIN CONCEPTS OF THE METAMODEL [9] ... 12
FIGURE 2. MODELS@RUN-TIME ARCHITECTURE [3] .. 13
FIGURE 3. PAASAGE MODEL [13] .. 14
FIGURE 4. CLASS DIAGRAM OF THE CAMEL METAMODEL INCLUDING PACKAGES [14] ... 15
FIGURE 5. CLASS DIAGRAM OF APPLICATION DESCRIPTION .. 18
FIGURE 6. CLASS DIAGRAM OF CLOUD SERVICES .. 21
FIGURE 7. SUB-WORKFLOW FOR DECIDE CLASSIFICATION TOOL .. 23
FIGURE 8. COMPONENT DIAGRAM OF APPLICATION CLASSIFICATION TOOL .. 26
FIGURE 9. UI OF OPTIMUS APPLICATION CLASSIFICATION TOOL... 27
FIGURE 10. OPTIMUS APPLICATION CLASSIFICATION TOOL’S RESULT .. 28
FIGURE 11. SOCKSHOP APPLICATION DIAGRAM [19] .. 29

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 6 of 39

www.decide-h2020.eu

List of Tables

TABLE 1. SUMMARY OF STANDARDS ANALYSED ... 15
TABLE 2. ATTRIBUTES VS CLOUD SERVICES TYPES .. 21
TABLE 3. CLASSIFICATION EQUIVALENCES ... 24
TABLE 4. REQUIREMENTS FOR OPTIMUS CLASSIFICATION TOOL ... 25
TABLE 5. INFORMATION REQUIRED FOR OPTIMUS CLASSIFICATION TOOL ... 29
TABLE 6. CLASSIFICATION OF SOCKSHOP APPLICATION ... 32
TABLE 7. CLOUD SERVICES FOR THE SOCKSHOP APPLICATION .. 32

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 7 of 39

www.decide-h2020.eu

Terms and abbreviations

CAMEL Cloud Application Modelling and Execution Language

CPIM Cloud Provider-Independent Model

CPSM Cloud Provider-Specific Model

CSP Cloud Service Provider

DB Data Base

DSL Domain Specific Language

EC European Commission

JSON JavaScript Object Notation

KR3 Key result 3

NFR Non-Functional Requirement

TOSCA Topology and Orchestration Specification for Cloud Applications

URI Unified Resource Identifier

URL Unified Resource Locator

WP3 Work Package 3

XML eXtensible Markup Language

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 8 of 39

www.decide-h2020.eu

Executive Summary

The DECIDE framework and therefore all the tools that belong to it, will need information about the
multi-cloud application during the whole workflow. Each of the tools will manage some aspects of that
application and it will be critical to provide the capability of understanding amongst them. No matter
which tool or process is running at each time, the information has to be the same for all actors, in the
same format so as to avoid any inconsistence that could be raised.

Modelling the information about the Application and its elements covers the necessities described
above. The "Application Description", arisen in the first steps of the project, is the information that
includes all the needed data from the application. This deliverable aims to evaluate if the application
information could be modelled following the available standards or whether there are reasons to not
use any of them. The analysed standards (CAMEL, TOSCA, CloudML) are not focused on modelling
multi-cloud applications: CAMEL is the most promising one, but after a careful analysis the consortium
has decided that for the first version of DECIDE, the project will not use any of them.

The deliverable starts with a state of the art for TOSCA, CAMEL and CloudML, the main standards for
modelling cloud applications, and the properties that should be associated to the multi-cloud
application and its deployment. Then the document discusses the most appropriate way to represent
all elements related to the before mentioned multi-cloud application in the context of DECIDE.

The requirements of the project and the features of these standards have been compared and
evaluated in order to establish the best solution for modelling the application as well as the cloud
services and their inter-relation for the deployments.

Moreover, this document proposes a first approach to OPTIMUS classification tool, based on the
analysis of the information required by OPTIMUS, and provides the first version of the Profiling and
classification techniques in DECIDE. Both tool and techniques will be updated in further releases,
considering the evolution of the elements of the DECIDE framework.

The last section presents a use case or proof of concept. The SockShop application [1] has been used
to present an example of how an application would be classified following the criteria set for the
OPTIMUS classification tool.

Finally, an appendix to show the work made representing the tentative SockShop Application
Description in CAMEL has been added.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 9 of 39

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

This deliverable is one of the results of Work Package 3, Continuous Architecting, and describes on one
hand the most appropriate way to represent the information about a multi-cloud application as well
as the cloud services where it will be deployed to make it understandable by all other DECIDE tools
and, on the other hand, the process to classify the applications in order to obtain the best match with
the cloud services that are in the DECIDE ACSmI registry.

The first part of this document (section 2) analyses the different languages and ecosystems proposed
by standardization organizations and European projects for modelling applications and their
characteristics.

The second part (sections 3, 4 y 5) studies the different elements that should be represented by the
selected model, if any. Related to the information that flows across the DECIDE framework, and
regarding the use that each DECIDE tool needs to do, three main elements have been taken into
account:

• Multi-cloud applications: details about the structure of the application, the Non-functional
requirements associated, the cloud services that are the best option for its deployment, and
the needed information to identify the application.

• cloud services: the properties of the cloud services supported by the DECIDE framework.

• Deployment configuration: the information with which DECIDE will perform the best
deployment of the application.

The third part of the document (sections 6 y 7) presents the classification tool, including a first
description of the process as an entry point of OPTIMUS.

1.2 Document structure

The organization of this document consists of the following sections.

Section 2 describes a brief state of the art regarding TOSCA, CloudML and CAMEL standards. A
comparison from DECIDE’s point of view has been performed. Section 3 is concerned with the
modelling and application and introduces the Application Description, which turns to be the main
information model for the DECIDE framework. The Application Description aims to describe the details
of an application as managed by DECIDE tool-suite. Section 4 introduces how configurations will be
modelled in DECIDE, specifically by DECIDE OPTIMUS, which will offer the best deployment
configuration taking into consideration the needs specified by DECIDE’s user. This configuration will be
modelled and later on used by DECIDE ADAPT, the tool in charge of deployments in the context of
DECIDE. Section 5 focuses on the modelling of cloud service offerings, showing the relationship
between DECIDE OPTIMUS and ACSmI. ACSmI [2], or the Advanced cloud services meta-Intermediator,
a tool developed also in the context of DECIDE, provides a registry where the developer and other
DECIDE tools can find the cloud services available for the corresponding deployments. The information
and properties of these cloud services are described in this section. Section 6 presents the process by
which OPTIMUS classification classifies each of the components of the multi-cloud application.
Furthermore, Moreover, a first architectural approach and design of OPTIMUS classification tool,
based on the requirements gathered by WP3 contributors, is included, Section 7 is devoted to
presenting a proof of concept about how a specific application can be represented by following the
models defined in previous sections. Finally, section 8 presents the conclusions and future activities in
this line of work.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 10 of 39

www.decide-h2020.eu

An Appendix has also been included, which aims to present a first version of an Application Description,
in this case for a sandbox application such as the SockShop application [1] following the PaaSage-
CAMEL standard [3]

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 11 of 39

www.decide-h2020.eu

2 Analysis of CSP and multi-cloud applications modelling and
describing languages

With the objective of properly classifying each of the components of a multi-cloud application, DECIDE
OPTIMUS classification tool requires certain information so as to be able to assign a ‘type’ to each of
those components. Assigning a ‘type’ is needed to understand which resources and which cloud
services are needed to deploy each component.

To this respect, OPTIMUS classification tool includes some techniques that aim to facilitate the
modelling of these characteristics of such multi-cloud application components and the needed
underlying resources.

To solve this challenge, this section aims to analyse standard cloud application modelling languages,
their main characteristics and the aspects where each of them best fits within the DECIDE
requirements.

2.1 TOSCA

TOSCA (Topology and Orchestration Specification for Cloud Applications) is an “OASIS open standard
that defines the interoperable description of services and applications hosted on the cloud and
elsewhere; including their components, relationships, dependencies, requirements, and capabilities,
thereby enabling portability and automated management across cloud providers regardless of
underlying platform or infrastructure; thus expanding customer choice, improving reliability, and
reducing cost and time-to-value. These characteristics also facilitate the portable, continuous delivery
of applications (DevOps) across their entire lifecycle. In short, they empower a much higher level of
agility and accuracy for business in the cloud”. [4]

The TOSCA language introduces a grammar for describing service templates by means of Topology,
Templates and plans.

TOSCA utilizes the XML Schema 1.0 specification, and also allows extending the definitions with
additional specific needs as attributes from other namespaces to appear on any TOSCA element, and
elements from other namespaces to appear within TOSCA elements, as long as these extension
attributes and extension elements do not contradict the semantics of any attribute or element from
the TOSCA namespace.

The TOSCA specification defines a meta model for defining IT services, including both aspects of the
services, their structure (topology template or topology model of a service) and how to manage it
(plans or workflows define the process models that are used to create and terminate a service as well
as to manage a service during its whole life time – specified in BPMN or BPEL).

TOSCA allows for expressing requirements and capabilities of components of a service. Non-functional
behaviour or quality-of-services are defined in TOSCA by means of policies.

All the information needed to define a service (application) by TOSCA, is included into a “TOSCA
Definitions” document, written in XML syntax. Among others, the Definitions element has the following
properties [5]:

• Id: is the identifier of the Definitions document. It is unique within the target namespace

• Name: Optional. Name of the Definitions document.

• targetNamespace: the target namespace for the Definitions document

• Extensions: Optional. It specifies namespaces of TOSCA extension attributes and extension
elements. If present, it must include at least one of the following element:

o Namespace: the namespace of TOSCA extension attributes and extension elements.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 12 of 39

www.decide-h2020.eu

o mustUnderstand: it specifies whether the extension must be understood by a
compliant implementation. If it has value “yes” (default value) the extension is
mandatory, otherwise, the extension is optional.

• Import: dependency on external TOSCA Definitions, XML Schema definitions, or WSDL
definitions. It is composed by three sub properties, namespace location and importType.

• Types: XML definitions introduced within the Definitions document.

• And at least one of these elements: ServiceTemplate, NodeType, NodeTypeImplementation,
RelationshipType, RelationshipTypeImplementation, RequirementType, CapabilityType,
ArtifactType, ArtifactTemplate, PolicyType, or PolicyTemplate.

A specification where it can be found the rest of the elements for the TOSCA definition document,
Topology and Orchestration Specification for Cloud Applications Version 1.0, released on 25 November
2013 is available. At the time of writing this deliverable (November 2016), the TOSCA Simple Profile in
YAML Version 1.1 is available. This version is in draft format and it consists of the definition of a
simplified profile of the TOSCA Version 1.0 specification in a YAML rendering which is intended to
simplify the authoring of TOSCA service templates [6].

YAML is an international collaboration to make a data serialization language which is both human
readable and computationally powerful [7].

2.2 CloudML

CloudML provides a domain-specific modelling language along with a run-time environment that
facilitates the specification of provisioning, deployment, and adaptation concerns of multi-cloud
systems at design-time and their enactment at run-time [8].

CloudML is also inspired by component-based approaches in order to facilitate separation of concerns
and reusability. In this respect, deployment models can be regarded as assemblies of components
exposing ports, and bindings between these ports.

The Figure 1 shows the main concepts of the type part of the metamodel:

Figure 1. Main concepts of the metamodel [9]

A CloudMLModel consists of CloudMLElements, which can be associated with Property and Resources.
A Resource represents an artefact (e.g., scripts, binaries, configuration files, etc.) adopted to manage

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 13 of 39

www.decide-h2020.eu

the deployment life-cycle (e.g., download, configure, install, start, and stop). The three main types of
CloudMLElements are Component, Relationship, and ExecutionBinding. [9].

The principal elements described in Figure 1 are:

• Component (reusable): It can be an ExternalComponent managed and provided as a service by
a Provider (e.g., a Beanstalk container), or an InternalComponent managed and deployed by
CloudML (e.g., a Servlet container). For example, VM is a type of ExternalComponent and
represents a reusable type of virtual machine (e.g., a virtual machine running Linux)

• Port: it is an interface of a component. It can be a ProvidedPort, or a RequiredPort (just for
internal components)

• ExecutionPlatformPort it is another type of interface of a component.

• Relationship (reusable): it is a type of relationship between ports of two internal
components.

• ExecutionBinding (reusable): it is a type of binding between a required and a provided
execution platform port.

CloudML provides an editor that can be installed in an IDE such as eclipse and it allows loading store
models in these serialized forms: JSON, XMI, DOT [10]

2.3 CAMEL

CAMEL (Cloud Application Modelling and Execution Language) is a domain specific language (DSL) that
allows users to specify multiple aspects of cross-cloud applications, such as provisioning and
deployment, service-level objectives, metrics, scalability rules, providers, organisations, users, roles,
security controls, execution contexts, and execution histories [11].

CAMEL allows users to specify the components that are part of the topology of cloud-based
applications along with the processes for their orchestration. Moreover, CAMEL supports the
specification of types, templates, and instances, adding this last capability to those provided by TOSCA,
and allowing therefore, the use not only at design-time, but also at run-time.

Figure 2. Models@run-time architecture [3]

http://www.decide-h2020.eu/
https://github.com/SINTEF-9012/cloudml/tree/master/codecs/json
https://github.com/SINTEF-9012/cloudml/tree/master/codecs/xmi
https://github.com/SINTEF-9012/cloudml/tree/master/codecs/dot

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 14 of 39

www.decide-h2020.eu

CAMEL consists of an Ecore model1. This enables to specify CAMEL models using the CAMEL Textual
Editor as well as to programmatically manipulate and persist them through Java APIs.

The PaaSage Project [12] refined CAMEL models that represent the life cycle of the cloud applications,
to obtain more advanced models over the different phases of a workflow related to the self-
adaptation, taking advantage of models@run-time approach followed by CAMEL.

The modified model is shown in Figure 3:

Figure 3. PaaSage Model [13]

The metamodel in CAMEL is as follows:

1 An Ecore model is a metamodel, included in the Eclipse Modeling Framework, for describing models and
runtime support for the models. [20]

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 15 of 39

www.decide-h2020.eu

Figure 4. Class diagram of the CAMEL metamodel including packages [14]

2.4 Comparison

The standard modelling languages studied in the previous sections are summarized in the following
table:

Table 1. Summary of standards analysed

Standard Description Extendibility Projects

TOSCA OASIS standard to describe a
cloud application as a topology
of cloud services, their
components, relationships,
dependencies, requirements,
and capabilities.

TOSCA allows extending the
definitions with additional
specific needs as attributes from
other namespaces to appear on
any TOSCA element, and
elements from other namespaces
to appear within TOSCA
elements. As long as these
extension attributes and
extension elements do not
contradict the semantics of any
attribute or element from the

CloudSocket;
Cactos

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 16 of 39

www.decide-h2020.eu

Standard Description Extendibility Projects

TOSCA namespace, this is
permitted.

CloudML CloudML allows developers to
model the provisioning and
deployment of a multi-cloud
application taking into account
two levels of abstraction such as
the Cloud Provider-Independent
Model (CPIM) and at the Cloud
Provider-Specific Model (CPSM).

By adding new elements to a
particular CloudML profiles

ARTIST;
MODAClouds

CAMEL CAMEL (for Cloud Application
Modelling and Execution
Language) is a domain-specific
language (DSL) enabling users to
specify multiple aspects of
multi-cloud applications

By modifying the grammar and
editor

PaaSage;
MUSA

The column "extendibility" shows the possibility of extending the model in order to evaluate its use in
the DECIDE project. The projects in this table used the corresponding standard and contributed to it.

The standards summarized in the table above could be extensible but the complexity of the
modifications could not contribute to improve any aspect of the solution. Furthermore, when using
the DECIDE framework, the information about the application is not explicitly formalized by the
developer and it is managed in a transparent way across the whole workflow. Therefore, we conclude
that for DECIDE there is no need for any editor: the models are only used as the mechanism for
representing the data, to give the same structure to all the information so that it can be understood
by all the tools.

At this point of the project, the first version of this application information is stored in a JSON file,
which includes the properties described in the following sections for the application, the cloud services
and the deployments configurations.

Taking into account the data modeled for the applications, cloud services and Deployments
configurations, the CAMEL model includes most of the properties that are needed in the DECIDE
project. This de facto standard, especially relevant in H2020 projects, is not as relevant as the TOSCA
ecosystem but it is a selection of its sub models, and it includes parts of CloudML as TOSCA does.

If in the next steps of the project a standard is required to model the application, CAMEL could cover
this necessity. But at this point of the project it seems to be the best solution to use a simple format,
like the JSON files.

All DECIDE tools are currently using a JSON file for storing the information about the application, and
the evolution of these tools will be based on this format. Nevertheless, it will be taken into
consideration the possibility of adapting the CAMEL model to the DECIDE application model in order
to provide an extra functionality that can improve the developer’s experience, as for example, enabling
him the possibility of exporting the Application Description in CAMEL (adapted to DECIDE project)
format. The implementation of this functionality will depend on the evolution of the Application
Description and it will be reflected in future versions of this deliverable.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 17 of 39

www.decide-h2020.eu

3 Modelling applications

In order to fulfil the main aim of the DECIDE project of improving the design, development, and
dynamic deployment of multi-cloud applications, the project deems necessary to define a global
structure that describes the required information about the main managed element, that means, the
multi-cloud application.

The definition of the characteristics of a multi-cloud application will be gathered into the Application
Description. The Application Description is a structure shared by all the DECIDE tools and throughout
the whole DECIDE workflow.

This structure is a JSON file with which the developer cannot interact directly. The different tools are
in charge of its modification, making it understandable to the rest of them, while maintaining the
consistency of the information that is in it. The characteristics of the multi-cloud applications to be
gathered in the Application Description and managed for the DECIDE framework, include the following
data and with the following structure2:

• Id: Unique identifier for the Application Description

• name: Name of the application

• description: Textual description of the application

• highTechnologicalRisk: Indicates if the application has high technological risk: confirmation for
(re)deployment is needed

• appNFRs: List of selected NFRs for the application.

• microservices: List of microservices that the application is composed of. For each of them, the
following information will be stored:

o id: Unique Identifier for the microservice
o repo: Reference to location of microservice repo
o name: Human readable name for the microservice
o programmingLanguage: Type of programming language used for microservice (hint)
o container_ref: Id or URI of container in which the microservice will be located.
o endpoints: List of URI to access the services and their methods
o stateful: Is the microservice stateful (1) or stateless (0).
o Type: The type of the microservice, as the result of the classification process. The

available types are described in the section 6.1 Profiling components.
o Patterns: List of patterns applied to the microservice, suggested by DECIDE

ARCHITECT.
o Dependencies: List of microservice names the current one depends on.
o NFRs: List of selected NFRs per microservice
o publicIP: True if the microservice needs a public IP address.
o Ports: List of ports for communicating.
o infrastructure_requirements: Requirements for the infrastructure hosting the

microservice:
▪ disk_min
▪ disk_max
▪ RAM_min
▪ RAM_max

o Detachable_resources: list of elements that are going to be used by the microservice
as for example external DB services:

▪ Resource: Defined at this time persistency and DB
▪ SQL: If the type is DB this information is Boolean (1: yes – 0: no)

2 The current detailed definition of all the fields is reported in the Appendix to deliverables D4.1 [21] and D2.4
[16]

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 18 of 39

www.decide-h2020.eu

▪ Specific DB: When the type is DB, the user can specify which kind of DB will
need (mongo DB, etc.…)

▪ Size: For DB type it will be SMALL, MEDIUM or LARGE

• Schema: the best option for the deployment for this application, provided by OPTIMUS. This
schema will be a list of pairs (microservice_id, cloudservice_id) to inform the user and the
Application Controller about the best cloud services selected for the deployment of each
microservice

The first versions of all DECIDE tools manage a JSON format for the Application Description.

The class diagram that represents the relationships among the different elements involved in the
Application Description is shown in this picture:

Figure 5. Class diagram of Application Description

One “multicloudApplication” element must have at least two “microservice” elements in its
architecture, because of its multi-cloud application nature.

The "microservice" element cannot belong to more than one "multicloudApplication" in this diagram.
But in fact, one microservice can be the same element in two applications, although this microservice
element (software code) can have several deployments, each one controlled by a different application.

The “Schema” element will be in the Application Description as the current Schema. The previous
schemas will be stored in a Historical repository managed by Application controller [15].

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 19 of 39

www.decide-h2020.eu

4 Modelling configurations

DECIDE project considers, at this stage, as configurations the characteristics associated to the
deployments of multi-cloud applications. Detailed information about this, along with detailed
explanations regarding the data can be found in deliverable D2.4 ‘DECIDE integrated architecture’ [16]
created in the context of WP2.

In DECIDE, the configuration for the deployment of the multi-cloud application consists of the
following items:

• A list of containers with the following properties:
o Id: Id of the container
o containerName: Name of the container
o imageName: Name of the container image
o imageTag: Tag to identify the container in the registry
o dockerPrivateRegistryIp: IP of a Docker private registry, which will host custom

container image prepared by a developer that are not published to the public Docker
Hub repository

o dockerPrivateRegistryPort: Port of the private Docker registry
o dockerPrivateRegistryUser: Username to access the private Docker registry
o dockerPrivateRegistryPassword: Password to access the private Docker registry
o hostname: Hostname of the container
o restart: Attribute indicating the restart policy for this container (e.g. “always”)
o command: Comma-separated list of commands to be passed to the container, as for

the “CMD” Dockerfile specs
o entrypoint: Comma-separated list of commands and parameter to be passed to the

container, as for the “ENTRYPOINT” Dockerfile specs
o DockerHostNodeName: Name of the VM hosting the container
o networks: This field will trigger the creation of a dedicated Docker network on the

container to allow two containers to see each other
o volumeMapping: Mapping of volumes from host paths to container paths.

▪ hostPath: Path on the host
▪ containerPath: Path on the container

o environment: List of comma-separated KEY=VALUE environment variables to be
defined before starting the container, as for the “ENV” Dockerfile specs

o consulKvProviderNodeName: Name of the node hosting the Consul Key-Value provider
o addConsulService: Specify whether to register the service to a Consul service registry

(enables basic health-check)
o addConsulTraefikRules: Specify whether to add reverse proxy routing rules to the

Consul K/V store (based on “Host:” header)
o portMapping: List of ports to be published by this container

▪ hostPort: Port to be exposed on the host
▪ container_Port: Port exported by the container

o endpoints: List of endpoints for this container
▪ protocol: Typically, “http”, but it can be something else according to URL

syntax
▪ port: The port to which the endpoint is bound
▪ skipRule: Set to 1 to discard the routing rule based on hostname (“Host:”

header)
▪ containerNameOverride: Overrides the standard routing rule based on

hostname; hence, it allows to consider a different hostname for this service

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 20 of 39

www.decide-h2020.eu

• A list of Virtual Machines with these related properties:
o id: Id of the VM
o csp_name: Name of the CSP providing this VM
o csp_id: Internal UUID for the CSP providing this VM
o RAM: Amount of memory (in GB)
o cores: Number of cores
o storage: Amount of disk space (in GB)
o image: Name of the VM image (identifies also the OS and its version)
o ACSmIEndpoint: Endpoint of the ACSmI API, to which all the cloud resources

provisioning requests are sent
o ACSmIUsername: Username for the ACSmI API access
o ACSmIPassword: Password for the ACSmI API access
o vmSoftwareId: Id of the software resource from the ACSmI catalogue dictionary.

Represents the OS and version of the VM (e.g. “Ubuntu 16.04”)
o vmResourceIid: The id of CloudBroker VM resource, which represents the underlying

CSP that will perform the real provisioning
o vmRegionId: The id of the “Region” where the VM will run, taken from the CloudBroker

catalogue dictionary (E.g.: Zrh, US Standard, …)
o instanceTypeId: The id of the “instanceType” which represents the combination of

resources allocated to the VM (e.g. “2 Total cores, 2GB RAM)
o keyPairId: The id of the keypairs needed to access CloudBroker resources (associated

to the CloudBroker user profile)
o openedPorts: The comma separated list of ports to be open on the VM
o consulJoinIp: Address of the master Consul node; if “self", it means that this VM will

act as master
o dockerPrivateRegistryIp: IP of a Docker private registry, which will host custom

container image prepared by a developer that are not published to the public Docker
Hub repository

o dockerPrivateRegistryPort: Port of the private Docker registry
o dockerHostNodeName: Name of the Docker node (referenced by the same field in

each container definition)

This description is made based on the first versions of the tool responsible on the deployments (ADAPT)
and it is expected to evolve and change during the life of the project. Further versions of this document
will reflect such evolution of the complete Application Description element.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 21 of 39

www.decide-h2020.eu

5 Modelling cloud services

Cloud services are important elements in the DECIDE integrated framework. Several tools, such as
OPTIMUS (both in its simulation and classification processes), ADAPT, and ACSmI, will use the
information related to these services and their CSPs.

This section details the aspects related to the modelling of cloud services. These aspects should
facilitate the selection of the cloud services´ elements that will be used in DECIDE.

Figure 6. Class diagram of cloud services

The figure above shows the relationship among the different elements involved in the definition of
the cloud services.

The main elements are:

• Service: This element describes the different services that will be included in the DECIDE
Service registry.

• Service Type: This element is used by OPTIMUS classification and simulation tool in order to
request for the corresponding service for deployment. These types are described in more
detail in section 6¡Error! No se encuentra el origen de la referencia. of this document.
Examples are: Virtual Machine, Container, DB.

• Service Attribute: This entity represents the different attributes that can be associated to the
different service types. The relation between the services attributes and the service types is
shown in Table 2. A description of each service attribute can be found in [2].

• Service Attribute value: this is the value associated to an attribute for each service. There could
be a preliminary list of values for each one of them. For example, for the “Region” attributes,
the values could be “Ireland”, “France”, “US”, “Germany”, and so on. When the developer is
selecting the Non-Functional Requirements (NFR) for a certain microservice using the NFR
Editor, he could be interested in a specific region for his location requirement, for example
France. Then the selection made by the developer in the NFR Editor, will match with the
information associated to a cloud service.

Table 2. Attributes Vs Cloud services Types

Storage DataBase Virtual Machine Container

Name Name Name Name

Region Region Region Region

Provider Provider Provider Provider

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 22 of 39

www.decide-h2020.eu

Storage DataBase Virtual Machine Container

Type Type CPU cores Storage (GB per
month)

Subtype Subtype Total Cores Data transfer out (GB
per month)

Capacity Availability Zone Hyperthreading

Access type Technology MHz per core

Data Redundancy License Memory

 Instance Type

 Size

 CPU

This is the first description of the information model for the cloud services and their providers, and can
change as DECIDE tools evolve, especially ACSmI, (Advanced cloud services meta Intermediator). More
information about this model can be found in D5.2 Initial Advanced Cloud Service meta Intermediator
[2]

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 23 of 39

www.decide-h2020.eu

6 DECIDE OPTIMUS classification tool

Once it is decided the application’s information that is needed, and taking into account the different
types of services that DECIDE is going to manage during the whole process, the classification tool, as
part of DECIDE OPTIMUS, will offer as result the classification for each one of the microservices
involved in the application.

The access point to the classification tool will be trough OPTIMUS UI, as it is indicated in the sub
workflow in ¡Error! No se encuentra el origen de la referencia. (see complete workflow in D2.1
Detailed Requirements specification v1 [17]):

Figure 7. Sub-workflow for DECIDE classification tool

6.1 Profiling components

The classification tool, as the first entry point to OPTIMUS simulation, will assign to each microservice
belonging to the application, one of the types defined “necessities for deployment”, which are
described in the following paragraph. The classification tool will use some of the data of the Application
Description described in the previous section to assign one type of “necessities for deployment” to
each of the components that compose the multi-cloud application.

The types “necessities for deployment” are the means to identify the type of the cloud service that the
microservice needs to be properly deployed.

Considering that microservices are going to be deployed in a cloud service by a specific provider, the
types of necessities have to be related to these cloud services and their providers.

At this early stage of the project, the following types of necessities have been defined, that correspond
to the distinct types of cloud service offerings:

• Computing

Computing (necessity of) type is assigned to components (microservices) that are implemented by a
developer and needs some resources for them, that is, microservices that need to be placed into a
host for running them.

The types of cloud services related to “Computing” are Virtual Machines and Containers.

• Computing with public IP

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 24 of 39

www.decide-h2020.eu

This type is for the previously explained computing components that need a public IP to expose some
services to the external network. This is typically used for entry pages or platforms in web applications.

The types of cloud services related to “Computing” are Virtual Machines and Containers, but the
provider has to make available an external access to the users.

• Storage. Persistency

The Storage persistency (necessity of) type covers the microservices that will need a resource where
to place a big quantity of data like Big data analytics, backups etc.

• Storage. DB

The Storage DB type includes components that access databases, as relational database or NoSQL
database.

The related cloud services are database services that are managed by the provider and can be launched
with no need of any installation from the user side.

To obtain the different necessity types and the correspondence with each of the cloud services types,
a process of profiling components has been created, with the main aim of analyzing which
characteristics are specific to the components that are to be deployed in a particular type of cloud
services.

The developer has to include the above presented characteristics of the elements of his multi-cloud
application by answering the questions presented in the OPTIMUS UI (User Interface).

The information requested to the developer is:

• Developed by you: (Y/N). Y if the developer has built the microservice and has its code.

• Public IP: (Y/N): Y if the microservice needs to be placed somewhere with public access to it.

• Persistency: (Y/N). Y if the microservices needs to storage or access to a big amount of data
during its performance.

• DB: (Y/N). Y if the microservice needs access for reading and writing information in a DB, but
without having to manage it.

The classification process is described in the following section.

6.2 Components classification of standard multi-cloud applications

Once the types of microservices and the information about the application are defined, DECIDE
OPTIMUS is able to start with the classification process of the microservices belonging to the
application.

The equivalence between the data provided by the developer (“Field in OPTIMUS UI” with the value
“Value” column) through the OPTIMUS UI or by DECIDE ARCHITECT tool, and the properties of the
Application Description (“Property” column), are shown in Table 2. The “Assigned Type” column
indicates the type assigned to the microservice.

Table 3. Classification equivalences

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 25 of 39

www.decide-h2020.eu

Property Value Assigned Type Field in OPTIMUS UI

Microservices.Infrastructu
re_requirements

Not
empty

Computing developed by you

Public IP Yes (1) Computing with
Public IP

Public IP

Microservices.Detachable_
resources.Persistency

Yes (1) Storage.
Persistency.

Persistency in the popup window for
Detachable Resources (see Figure 9)

Microservices.Detachable_
resources.DB

Yes (1) Storage. DB. DB in the popup window for
Detachable Resources (see Figure 9)

This equivalence and the NFRs values assigned by the developer will allow the OPTIMUS simulation
process to construct a request to ACSmI to obtain the different possibilities related to the cloud
services (CSs) available in the service registry of ACSmI, and which fulfill the requirements of the
request. Then, after the simulation process takes place, OPTIMUS will suggest the best deployment
schema for the application.

It is to be noted that not all the information provided by the developer and stored in the Application
Description will be used to classify an application. The OPTIMUS classification UI is the main interface
to introduce the details about the microservices and they will be stored for further exploitations.

The initial necessities to deploy the microservices shown in this deliverable and their relationship to
cloud services types will evolve as the tools and processes that are involved in the DECIDE framework
evolve as well. Subsequent versions of the D3.4 deliverable will take into account this evolution.

6.3 Tool description

Based on the data on the microservices provided by the developer and on the information about the
types of cloud services, the classification tool will perform the classification of components
(microservices) that compose the multi-cloud application as it is described in section.

The result of the classification is the necessity of cloud service type for each of the microservices, and
it will be used as input to OPTIMUS simulation tool. For this tool it has been considered, as best design
option, the inclusion of the classification activities into the OPTIMUS global process as the very first
entry point to the tool.

This tool is the first step of the simulation process performed by OPTIMUS, and it will be developed as
a part of such tool. Therefore, this document includes the general description of this process but a
deeper design of it can be found in document D3.7. Initial DECIDE OPTIMUS [18].

6.4 Tool requirements and design

The requirements settled in a collaborative way by the WP3 are listed in the next table.

Table 4. Requirements for OPTIMUS classification tool

Req. ID Description Comment

WP3-PROFI-
REQ1

Load/read information about the
application (components).

The app NFR information should
be stored in a DB, or should be
passed to OPTIMUS from
ARCHITECT

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 26 of 39

www.decide-h2020.eu

Req. ID Description Comment

WP3-PROFI-
REQ2

Classify the application, based on the
"stereotypes of the components" that
we defined in the design phase of the
profiling tool, and comparing it with the
information about the (component)
application.

A process has to be designed in
order to obtain the classification
of the multi-cloud application
components.

WP3-PROFI-
REQ3

Ask the developer to confirm the
classification

UI

WP3-PROFI-
REQ4

Store the information about the
classification made.

WP3-PROFI-
REQ5

Mechanisms for update the "stereotypes
of the components" information

The component diagram of the OPTIMUS tool includes the OPTIMUS Application classification
component, which has the sub-components shown in Figure 8 and listed below:

Figure 8. Component diagram of Application Classification tool

• OPTIMUS UI: This UI will gather the data related to the application and their components. Once
the classification is made, it will be shown in order to accept it by the developer.

• App Classification: This component represents the process that will be performed for the
classification. The complexity of this task will increase as the number of types and
characteristics to identify them increase.

• Types management: This component will manage the system knowledge about types of the
microservices of which a multi-cloud application is composed.

• Apps classification Repo: The information about the classification will be stored into the
Application Description.

The main functionality of this “OPTIMUS Application Classification” will be the establishment of a
relationship between each of the components of the application and one necessity type based on
the characteristics of those types, managed by Types management component.

The input for this classification task will come from the developer, through the OPTIMUS UI, and
once it has been matched with the information from the Types management component, the
output will be loaded into “Apps classification” repo. This information will be part of the
Application Description.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 27 of 39

www.decide-h2020.eu

The tool will be a wizard to guide the developer through the process of setting the necessity type
of the application components.

A first design of this wizard is shown in Figure 9.

Figure 9. UI of OPTIMUS Application Classification tool

The steps to collect the information about the application supported by this UI are:

1. Once the application name has been indicated, the UI requests for the first element or
microservice which the application is composed of.

2. The details about the component are detailed:

• Name,

• Stateless/Stateful

• Public IP/non-Public IP

• Dependencies from other components

• Ports for communications,

• if it is developed by the developer in which case a popup will appear to ask for more
information about this element of software.

3. A component may need to add a resource as a DB or Storage.
4. For each one of the detachable resources, the tool asks for some data about it.
5. Call the NFR Editor if there is some particular NFR associated to the microservice.
6. The information about the microservice is completed.
7. The developer could add another element or finish the description of the application,

obtaining the classification for all of them.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 28 of 39

www.decide-h2020.eu

Figure 10. OPTIMUS Application Classification tool’s result

Once the developer accepts the classification and pushes the Next button, the type assigned to each
of the microservices as well as the information related to each of them, are stored into the “Apps
classification repo”. Then the simulation process will start.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 29 of 39

www.decide-h2020.eu

7 Classifying a specific application

In order to make a proof of concept and to demonstrate that the previous analysis made about how
to model the different elements involved in the DECIDE project is valid, the project has used an
example published in the web as its architecture was intentionally designed to provide as many
microservices as possible.

In this section, the exercise is carried out taking the role of a developer who needs to classify the
microservices of the multi-cloud application.

The application to be used for the first releases and tests of the DECIDE components, is described as
follows:

• Name of the application: SockShop [1]

• Source: https://microservices-demo.github.io/

• Description: Sock Shop application covers the front-end of a website that sells socks. It is made
and maintained by Weaveworks and Container Solutions.

This application has been used for all DECIDE tools and it is considered the “sample” application in
DECIDE. More information about this application could be found in D2.4, “DECIDE integrated
architecture” [16]

The architecture of the SockShop application is shown in Figure 11 where the microservices are defined
by their usual function in an ecommerce site:

Figure 11. SockShop Application Diagram [19]

The developer has to complete the information required as follows:

Table 5. Information required for OPTIMUS classification tool

Field Value

Id ID of the application assigned automatically

Name SockShop

http://www.decide-h2020.eu/
https://microservices-demo.github.io/
http://weave.works/
http://www.container-solutions.com/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 30 of 39

www.decide-h2020.eu

Field Value

Description Application for selling socks

microservices Front-end id: ms1
name: Front-end
stateful: 0
Dependencies: [].
publicIP: 1
Ports: port1
infrastructure_requirements::

disk_min: X1
disk_max: Y1
RAM_min: Z1
RAM_max: V1

 Order id: ms2
name: Order
stateful: 0
Dependencies:[].
publicIP: 0
Ports: port2, port3
infrastructure_requirements::

disk_min: X2
disk_max: Y2
RAM_min: Z2
RAM_max: V2

Detachable_resources:
Resource: DBDB
SQL: 0
Specific DBDB: MongoDB
Size: MEDIUM

 Payment id: ms3
name: Payment
stateful: 0
Dependencies:[].
publicIP: 0
Ports: port4
infrastructure_requirements::

disk_min: X3
disk_max: Y3
RAM_min: Z3
RAM_max: V3

 User id: ms4
name: User
stateful: 0
Dependencies:[].
publicIP: 0
Ports: port5
infrastructure_requirements::

disk_min: X4
disk_max: Y4
RAM_min: Z4

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 31 of 39

www.decide-h2020.eu

Field Value

RAM_max: V4
Detachable_resources:

Resource: DBDB
SQL: 0
Specific DBDB: MongoDB
Size: MEDIUM

 Catalogue id: ms5
name: Catalogue
stateful: 0
Dependencies:[].
publicIP: 0
Ports: port6
infrastructure_requirements::

disk_min: X5
disk_max: Y5
RAM_min: Z5
RAM_max: V5

Detachable_resources:
Resource: DBDB
SQL: 1
Specific DBDB: MySQL
Size: MEDIUM

 Cart id: ms6
name: Cart
stateful: 0
Dependencies:[].
publicIP: 0
Ports: port7
infrastructure_requirements::

disk_min: X6
disk_max: Y6
RAM_min: Z6
RAM_max: V6

Detachable_resources:
Resource: DBDB
SQL: 0
Specific DBDB: MongoDB
Size: MEDIUM

 Shipping id: ms7
name: Shipping
stateful: 0
Dependencies:[].
publicIP: 0
Ports: port8, port9
infrastructure_requirements::

disk_min: X7
disk_max: Y7
RAM_min: Z7
RAM_max: V7

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 32 of 39

www.decide-h2020.eu

Field Value

 QueueMaster id: ms8
name: QueueMaster
stateful: 0
Dependencies:[].
publicIP: 0
Ports: port10
infrastructure_requirements::

disk_min: X8
disk_max: Y8
RAM_min: Z8
RAM_max: V8

Detachable_resources:
Resource: QueueSystem

There is no QueueSystem type for detachable resource for the time being, but in order to cover the
whole example, it has been included only for this purpose. The QueueSystem detachable resource will
be used by Shipping and QueueMaster microservices, but it is assigned to one of them because is the
same resource.

Based on this data and the types of cloud services managed by the tool, the result of the classification
for this particular example would be as follows:

Table 6. Classification of SockShop application

Field Value

Id ID of the application assigned automatically

Name SockShop

Description Application for selling socks

microservices Front-end Necessity Type: Computing with Public IP

 Order Necessity Type: Computing.
Detachable resource type: DB

 Payment Necessity Type: Computing.

 User Necessity Type: Computing.
Detachable resource type: DB

 Catalogue Necessity Type: Computing.
Detachable resource type: DB

 Cart Necessity Type: Computing.
Detachable resource type: DB

 Shipping Necessity Type: Computing.

 QueueMaster Necessity Type: Computing.
Detachable resource type: QueueSystem

And the corresponding types of cloud services that could be suitable for their deployments would be:

Table 7. cloud services for the SockShop Application

Microservice Type of Cloud Service needed

Front-end VM or Container (with Public IP)

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 33 of 39

www.decide-h2020.eu

Microservice Type of Cloud Service needed

Order VM or Container + DB

Payment VM or Container.

User VM or Container + DB

Catalogue VM or Container + DB

Cart VM or Container + DB

Shipping VM or Container.

QueueMaster VM or Container + QueueSystem

For example, for deploying the "Order" microservice a Virtual Machine or a container will be needed,
depending on the specific characteristics that the microservice has and the specific resources that the
provider of the Virtual Machine or container offers. Moreover, as the microservice has a detachable
resource associated, another cloud service has to be used, such as a DB cloud service. Taking into
account the possibility of using standard representation for the Application Description, and although
the physical representation of this element will be a JSON file (not supported by CAMEL), the exercise
of converting this example into CAMEL framework has been made.

By means of an installation of CAMEL eclipse framework developed by the PaaSage project, it has been
possible to adapt the grammar handled by the CAMEL editor, commenting information that would be
needed to represent all the data that will be managed in the DECIDE framework. These comments
could be taken as the detected necessities of extendibility at this stage of the work.

Not all the components of the SockShop application have been described but rather only a few of
them, however enough to perceive whether it is feasible to use this standard for modelling multi-cloud
applications. Doing this exercise, we discovered that a lot of information is required to be able to
describe an application, which cannot be represented by using a plain CAMEL model, concluding
therefore that it is not possible to use it without modifications.

The file with the CAMEL example can be found in APPENDIX I.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 34 of 39

www.decide-h2020.eu

8 Conclusions

This document has presented a fist version of the Application Description as considered in DECIDE,
which will evolve as the project progresses.

The nature of the DECIDE framework, which aims to be a guide for the life cycle of multi-cloud
applications, focusing on suggestions and semiautomatic deployment following a best configuration
approach, does not deem appropriate the need an editor for developers to model applications or
deployments. In DECIDE, we consider the modelling of the application as a transparent process and
across all DECIDE tools. The DECIDE Tool-suite is in need of a way to represent and to structure all the
information of the multi-cloud application, not of an entire framework or ecosystem.

In the context of this document, several standards and de-facto standards regarding cloud modelling
have been studied. From this analysis and at this stage, it can be concluded that the standards analyzed
are not solely focused on multi-cloud applications, even if this problem could be solved by extending
the respective models. This possibility will be studied for further versions of the Application Description
element, taking into account its evolution.

Therefore DECIDE, at this point of the project, deems appropriate not to use CAMEL or TOSCA or other
existing CloudML editors to model the application, but from our analysis we can conclude that CAMEL
could be the most suitable representation depending on the evolution of the different tools.

Nevertheless, the possibility of exporting the application data onto a CAMEL model could be a valuable
aspect for the application owner, if he wanted to migrate to a system with this application
representation. This should be analyzed for the next versions of DECIDE framework.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 35 of 39

www.decide-h2020.eu

References

[1] Weave works, Inc., “microservices-demo,” 2017. [Online]. Available:
https://github.com/microservices-demo/microservices-demo. [Accessed july 2017].

[2] DECIDE Consortium, “D5.2 Initial Advanced Cloud Service meta Intermediator,” 2017.

[3] CAMEL org, "CAMEL documentations," [Online]. Available: http://camel-
dsl.org/documentation/. [Accessed July 2017].

[4] OASIS, “OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC -
FAQ,” 2017. [Online]. Available: https://www.oasis-open.org/committees/tosca/faq.php.
[Accessed September 2017].

[5] OASIS, “Topology and OrchestrationSpecification for Cloud Applications Version 1.0,” 25
November 2013. [Online]. Available: http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-
v1.0-os.pdf. [Accessed September 2017].

[6] TOSCA, “TOSCA-Simple-Profile-YAML,” july 2017. [Online]. Available: http://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html.
[Accessed September 2017].

[7] YAML.org, “YAML,” 2001-2006. [Online]. Available: http://www.yaml.org/about.html. [Accessed
September 2017].

[8] SINTEF, “CLOUDML,” [Online]. Available: http://cloudml.org/.

[9] Gitlab, “CloudML Wiki,” 2017. [Online]. Available: https://github.com/SINTEF-
9012/cloudml/wiki. [Accessed October 2017].

[10] G. K. M. G. Alexander Bergmayr. Manuel Wimmer, “Cloud Modeling Languages by Example,” in
International Conference on Service Oriented Computing and Applications, Piscataway, 2014.

[11] CAMEL org, “CAMEL,” [Online]. Available: http://camel-dsl.org/.

[12] PaaSage, “PaaSage project,” 2012 - 2016. [Online]. Available: https://paasage.ercim.eu/.
[Accessed September 2017].

[13] PaaSage, “Paasage Traning materials,” 13 December 2016. [Online]. Available:
https://gitlab.ow2.org/paasage/camel/raw/master/documents/CAMELDocumentation.pdf.
[Accessed 2017].

[14] PaaSage, “PaaSage Project Deliverable,” October 2015. [Online]. Available:
https://paasage.ercim.eu/images/documents/docs/D2.1.3_CAMEL_Documentation.pdf.
[Accessed mayo 2017].

[15] DECIDE Consortium;, “D3.10 Initial multi-cloud native application controller,” 2017.

[16] DECIDE Consortium, “D2.4 DECIDE integrated architecture,” 2017.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 36 of 39

www.decide-h2020.eu

[17] DECIDE Consortium, “D2.1 Detailed Requirements specifitacion v1,” 2017.

[18] DECIDE Consortium, “D3.7: Initial DECIDE OPTIMUS,” 2017.

[19] Weaver works, Inc., “microservices-demo design,” [Online]. Available:
https://github.com/microservices-demo/microservices-demo/blob/master/internal-
docs/design.md. [Accessed November 2017].

[20] The Eclipse Foundation, “Eclipse Modeling Framework (EMF),” 2017. [Online]. Available:
https://www.eclipse.org/modeling/emf/.

[21] DECIDE Consortium, “D4.1: Initial DECIDE ADAPT Architecture,” 2017.

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 37 of 39

www.decide-h2020.eu

APPENDIX I - CAMEL Application Description

This appendix aims to show the result of the exercise made to represent the information about the
SockShop application (its Application Description) following the PaaSage-CAMEL standard [3]. There
are comments when the information did not apply to the example and also when some information
was needed that was not in the standard.

The first two microservices were translated into the standard, the rest of them are expected to be
similar.

//SockShop application:
// Front-end element: Software element web type (Public IP needed).
// Order element: Software element computing type with an detachable resource DB type.
// Payment element: Software element computing type.
// User element: Software element computing type with an detachable resource DB type.
// Catalogue element: Software element computing type with an detachable resource DB type.
// Cart element: Software element computing type with an detachable resource DB type.
// Shipping element: Software element computing type.
// Queue master element: Software element computing type with an detachable resource Queue type.

camel model SockShopAppDescription {
 application SockShop {
 version: '1.0'
 owner: SockShopCompany.mainuser
 deployment models [SockShopAppDescription.SockShopDeployment]
}

organisation model SockShopCompany {
 organisation Company {
 www: 'http://www.SockShop.com/'
 postal address: 'postal address'
 email: 'info@SockShop.com'
 }

 user mainuser {
 first name: Peter
 last name: Smith
 email: 'PeterSmith@SockShop.com'
 // these credentials would be a property to remove or modify from the DECIDE app
 //description metamodel
 paasage credentials 'xxxxxxxxxxxx'
 }
 //requirements for security.
 security level: HIGH
}
//collection of deployment elements, that can be
deployment model SockShopDeployment {

 // this requirement set element is a group of requirements for a resource (VM below)
 //is a reusable set of requirements for the VM being modelled
requirement set CoreIntensiveUbuntuGermanyRS {
 // from the requirement model (see Scalarm.camel example) the definition for Ubuntu is:
 // os Ubuntu {os: 'Ubuntu' 64os}
 os: ScalarmRequirement.Ubuntu
 // from the requirement model (see Scalarm.camel) the definition for CoreIntensive is:
 // quantitative hardware CoreIntensive {
 //core: 8..32
 //ram: 4096..8192
 //}
 quantitative hardware: ScalarmRequirement.CoreIntensive
 // from the requirement model (see Scalarm.camel) the definition for GermanyReq is:
 // location requirement GermanyReq {
 //locations [ScalarmLocation.DE]
 //}
 location: ScalarmRequirement.GermanyReq
 }

 vm CoreIntensiveUbuntuGermany {

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 38 of 39

www.decide-h2020.eu

 requirement set CoreIntensiveUbuntuGermanyRS
 provided host CoreIntensiveUbuntuGermanyHost
 }

 //here an internal component for each microservice we have, belonging to an application
 internal component Frontend {
 //the following aspects should be added to the model:
 //type: computing
 //order: 1
 //IP public: true --> this could be a property of the vm
 //it could be as provided-->input port and as required-->output port
 provided communication expPort1 {port: 0001 }
 required communication portname2 {port: 0002}
 //the component needs to be hosted on a specific VM. This VM has to have indicated its
 //requirements oriou characteristics in the description of this VM in the model.
// required host CoreIntensiveUbuntuIrelandHostReq --> for our example (ppt with mockups)
but here is not defined (i do not know where for now), therefore I supose Germany fits as well
 required host CoreIntensiveUbuntuGermanyHostReq
 configuration ExperimentManagerConfiguration{
 //This is an example provided by paasage project:
 //download: 'wget
https://github.com/kliput/scalarm_service_scripts/archive/paasage.tar.gz && sudo apt-get update && sudo
apt-get install -y groovy ant && tar -zxvf paasage.tar.gz && cd scalarm_service_scripts-paasage'
 //install: 'cd scalarm_service_scripts-paasage &&
./experiment_manager_install.sh'
 //start: 'cd scalarm_service_scripts-paasage && ./experiment_manager_start.sh'
 start: 'cd SockShop_service_scripts-decide && ./Frontend_start.sh'
 // for DECIDE could be something similar to: (TBD the information at this
point of lifecycle -- deployment)
 download: 'wget
https://git.code.tecnalia.com/decide/devops/SockShop/..../Frontend.tar.gz && sudo apt-get update &&
sudo apt-get install -y groovy ant && tar -zxvf Frontend.tar.gz && cd xxxxxxxxxx'
 install: 'cd SockShop_service_scripts-decide && ./Frontend_install.sh'
 start: 'cd SockShop_service_scripts-decide && ./Frontend_start.sh'
 }
 }

 internal component Order {
 //this is a detachable resource related to internal component Frontend. It should be
some property to indicate that relationship or could be another new element in the model (detached
resource)
 //as we have vm here
 //the following aspects should be added to the model:
 //type: DB
 //order: 1
 //IP public: false --> this could be a property of the vm?
 provided communication expPort3 {port: 0003 }
 required communication portname4 {port: 0004}
 //the component needs to be hosted on a specific VM. This VM has to have indicated its
requirements or
 // characteristics in the description of this VM in the model.

//required host CoreIntensiveUbuntuIrelandHostReq --> for SockShop example Germany
could fit as well

 required host CoreIntensiveUbuntuGermanyHostReq
 configuration ExperimentManagerConfiguration{
 //This is an example provided by paasage project:
 //download: 'wget
https://github.com/kliput/scalarm_service_scripts/archive/paasage.tar.gz && sudo apt-get update && sudo
apt-get install -y groovy ant && tar -zxvf paasage.tar.gz && cd scalarm_service_scripts-paasage'
 //install: 'cd scalarm_service_scripts-paasage &&
./experiment_manager_install.sh'
 //start: 'cd scalarm_service_scripts-paasage && ./experiment_manager_start.sh'
 start: 'cd SockShop_service_scripts-decide && ./Frontend_start.sh'
 // for DECIDE could be something similar to: (TBD the information at this
point of lifecycle -- deployment)
 download: 'wget
https://git.code.tecnalia.com/decide/devops/SockShop/..../Frontend.tar.gz && sudo apt-get update &&
sudo apt-get install -y groovy ant && tar -zxvf Frontend.tar.gz && cd xxxxxxxxxx'
 install: 'cd SockShop_service_scripts-decide && ./Frontend_install.sh'
 start: 'cd SockShop_service_scripts-decide && ./Frontend_start.sh'
 }
 }

 // related to the above mentioned vm

http://www.decide-h2020.eu/

D3.4 – Initial profiling and classification techniques Version 1.0 – Final. Date: 30.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 39 of 39

www.decide-h2020.eu

 hosting ExperimentManagerToCoreIntensiveUbuntuGermany {
 from ExperimentManager.CoreIntensiveUbuntuGermanyHostReq to
CoreIntensiveUbuntuGermany.CoreIntensiveUbuntuGermanyHost
 }

 }

}

http://www.decide-h2020.eu/

	Table of Contents
	List of Figures
	List of Tables
	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Analysis of CSP and multi-cloud applications modelling and describing languages
	2.1 TOSCA
	2.2 CloudML
	2.3 CAMEL
	2.4 Comparison

	3 Modelling applications
	4 Modelling configurations
	5 Modelling cloud services
	6 DECIDE OPTIMUS classification tool
	6.1 Profiling components
	6.2 Components classification of standard multi-cloud applications
	6.3 Tool description
	6.4 Tool requirements and design

	7 Classifying a specific application
	8 Conclusions
	References
	APPENDIX I - CAMEL Application Description

