
D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 1 of 24

www.decide-h2020.eu

Deliverable D3.5

Intermediate profiling and classification techniques

Editor(s): María José López

Responsible Partner: TECNALIA

Status-Version: Final . V1.0

Date: 28/11/2018

Distribution level (CO, PU): PU

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 2 of 24

www.decide-h2020.eu

Project Number: GA 731533

Project Title: DECIDE

Title of Deliverable: Intermediate profiling and classification techniques

Due Date of Delivery to the EC: 30/11/2018

Workpackage responsible for
the Deliverable:

WP3 - Continuous Architecting

Editor(s): TECNALIA

Contributor(s): Maria José López (TECNALIA)

Reviewer(s): Lorenzo Blasi (HPE)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5

Abstract: This deliverable comprises the intermediate models for
CSPs, microservices and deployment schemas, and some
other models for prototypical application components.

Keyword List: Modelling, classification, profiling

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and the
Commission is not responsible for any use that may be
made of the information contained therein

http://www.decide-h2020.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 3 of 24

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 01/10/2017 ToC TECNALIA

V0.2 26/10/2018 First version without general sections TECNALIA

V0.3 29/10/2018 First draft with all the sections TECNALIA

V0.4 5/11/2018 Update of NFRs structure TECNALIA

V0.5 6/11/2018 Ready for review TECNALIA

V0.6 23/11/2018 Modified according the review made TECNALIA

V0.7 28/11/2018 Included the comments from the
second internal review

TECNALIA

V1.0 30/11/2018 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 4 of 24

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 5

List of Tables .. 6

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction ... 9

1.1 About this deliverable ... 9

1.2 Document structure .. 9

Modelling microservices ... 10

2 Modelling Cloud services ... 12

3 Modelling Deployment Schemas ... 14

4 Classification tool .. 16

5 Mapping microservices and Cloud services .. 19

6 Modelling simulation data .. 20

7 Conclusions .. 23

8 References ... 24

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 5 of 24

www.decide-h2020.eu

List of Figures

FIGURE 1. MICROSERVICES STRUCTURE ... 10
FIGURE 2. TOOLS THAT PROVIDE THE PROPERTIES OF THE MICROSERVICES ... 11
FIGURE 3. CLASS DIAGRAM OF CLOUD SERVICES (ADOPTED FROM [5]) .. 12
FIGURE 4. SCHEMA DIAGRAM .. 14
FIGURE 5. NFRS DATA STRUCTURE ... 15
FIGURE 6. OPTIMUS CLASSIFICATION TAB IN THE ECLIPSE PLUGIN OF THE TOOL. ... 16
FIGURE 7. CLASSIFICATION MODULE IN OPTIMUS ARCHITECTURE. .. 17
FIGURE 8. SIMULATION STRUCTURES. ... 20

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 6 of 24

www.decide-h2020.eu

List of Tables

TABLE 1. ATTRIBUTES VS CLOUD SERVICE CLASSES (ADOPTED FROM [5]) .. 13
TABLE 2. REQUIREMENTS FOR OPTIMUS CLASSIFICATION TOOL ... 17
TABLE 3. EXAMPLE OF VALUES ASSOCIATING MICROSERVICES TO CLOUD RESOURCES. .. 21
TABLE 4. WEIGHT OF EACH CLOUD RESOURCE .. 22

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 7 of 24

www.decide-h2020.eu

Terms and abbreviations

AD Application Description

CS cloud service

CSP cloud service Provider

DB Data Base

DS Deployment Schema

IP Internet Protocol

JSON JavaScript Object Notation

NFP Non Functional Properties

NFR Non-Functional Requirement

RAM Random Access Memeory

REST Representational State Transfer

SLA Service Level Agreement

UI User Interface

URI Unified Resource Identifier

WP3 Work Package 3

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 8 of 24

www.decide-h2020.eu

Executive Summary

The DECIDE framework manages the information needed to provide the developers with the best
deployment related to the characteristics set by them. The multi-cloud application will be deployed
and running in an enviroment that the DECIDE framework can assure it is the most suitable for it, built
on resources from Cloud Service Providers (CSP) chosen among those registered in the DECIDE ACSmI
catalogue.

The Application Description (AD) JSON file is the shared data structure that contains all the information
that the DECIDE tools need. The AD document includes the data model for every data structure that
the tools manage.

This deliverable, in section 2, starts explaining the model describing the microservices that DECIDE
handles, it also explains which tool is in charge to obtain which properties as well as the meaning of
those properties.

Cloud services are also very important in the DECIDE integrated framework, so the model reflects the
information that is stored about them in the ACSmI registry, as it is described in section 3.

A new data model is introduced in this intermediate deliverable, in section 4, namely the Deployment
Schema (DS), as the result of the DECIDE OPTIMUS Simulation tool. It consists of a list of associations
between a cloud service and the group of microservices that will be deployed onto them. This DS will
be stored into the Application Description JSON file.

Moreover, this document shows the current status of the DECIDE classification tool, section 5, in its
intermediate state, the requirements that are planned to be implemented by M24, and the description
of the process that it is followed to classify a microservice. This tool in its current status is the evolution
of the previous one developed in M12 and will enjoy more changes until the final version. Section 6
describes the mapping between the value of the microservices classification and the classes of the
Cloud services offerings gathered in the ACSmI Discovery registry

Finally, in section 7, this document describes models for some additional structures that are managed
by the simulation process performed right after the classification. Those structures are based on the
data stored into the Application Description JSON file and the informatioun about the Cloud services
managed by the ACSmI registry. They are intermediate structures needed for OPTIMUS and related to
the Deployment Schema described above.

The DECIDE framework handles a shared data structure across all DECIDE tools and does not need an
specific editor for modelling applications or deployments by the developer. This document presents
the current status of the data models related to the multi-cloud application and how their properties
impact onto the selection of the best deployment schema. The next version of this document will show
the final models handled when a developer uses DECIDE to deploy his or her multi-cloud application
in the best possible way.

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 9 of 24

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

This document is the second version of the “Profiling and classification techniques” deliverable of Work
Package 3, Continuous Architecting. Its aim is to establish the most appropriate way to represent the
information about a multi-cloud application as well as the cloud services where it will be deployed to
make it understandable by all the other DECIDE tools. Moreover, the classification process will be
explained also as an important task to obtain the best match with the cloud services that are in the
DECIDE ACSmI registry.

A deep description of the Application Description is included as an appendix in the deliverable “D2.5:
Detailed architecture v2” [1]. Moreover, because all the DECIDE tools use the Application Description,
the deliverables related to each of them deal with its data structures, either from the perspective of
the microservices model, such as OPTIMUS [2] or from one that considers service level agreement
aspects, such as MCSLA Editor [3].

1.2 Document structure

The organization of this document consists of the following sections.

Section 2 describes the model of the microservices as a part of the multi-cloud application and the
tools that are responsible for collecting the related information and inserting it in the Application
Description. Section 3 is concerned with the modelling of the cloud services managed by ACSmI, and
stored into the ACSmI registry. Section 4 introduces the structure of the Deployment Schemas, the
result of the OPTIMUS simulation process. Section 5 focuses on the current status of the OPTIMUS
classification tool and section 6 complements it by explaining how that tool maps the microservices
and the Cloud services where they can be deployed. Section 7 is devoted to presenting the model for
some auxiliary structures and their use during the Simulation process. Finally, section 8 presents the
conclusions and future activities for the next version of the deliverable.

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 10 of 24

www.decide-h2020.eu

Modelling microservices

Multi-cloud applications refer to applications that dynamically can distribute their components over
heterogeneous cloud resources and still hold the functional, business and non-functional properties
(NFP) declared in their SLAs [4]. Distributed multi-cloud applications are typically developed according
to the microservices architecture.

In the DECIDE enviroment, the information about the application and their microservices, are stored
in the Application Description, a JSON file with which all the DECIDE tools can interact to obtain and
set the data managed by each of them.

In DECIDE, each microservice has the following structure of fields:

Figure 1. Microservices structure

As a part of the multi-cloud application each of the microservices will be deployed on a cloud service,
which can be a different one or one of the cloud services already used for another microservice
deployment. The most convenient distribution will be decided by DECIDE OPTIMUS tool taking into
account some of the properties detailed in the Figure 1.

The classification property is the result of the classification process performed by OPTIMUS. The
following properties are part of the input to decide the type of the microservice.

id: Unique Identifier for the microservice.
name: Human readable name for the microservice
dependencies: other microservices from which the microservice depends on.
sourceRepository: url of the repository where the microservice (software) will be placed
safeMethods: Information provided by DevOps Framework/General editor
stateful: True when the microservice keeps track of its status.
programmingLanguage: Type of programming language used for developing the microservice.
containerId: Id of the microservice’s container
containerRef: Reference of the microservice’s container
tags: Tags to relate NFRs with microservices
publicIP: True if the microservice needs a public IP address

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 11 of 24

www.decide-h2020.eu

endpoints: List of URIs to access the services and their methods
deploymentorder: If there are some dependencies from other microservices, the order in which this
one should be deployed.
infrastructureRequirements: Minimum and maximum requirements for Disk and RAM.
detachable_resource: The list of resources (if any) that are going to be used by the microservice as for
example external DB services

The main tools that manage those properties are Devops Framework (or the general editor plugin),
and OPTIMUS. The rest of the tools can read the data but they do not modify them.

Figure 2 shows the properties that these tools read and write. The DevOps Framework requests the
developer through its UI the following properties:

• name

• dependencies

• sourceRepository

• safeMethods

• stateful

• programmingLanguage

• tags
and once the developer provides the required information, the Editor writes it in the Application
Description JSON file, and assigns an id for the application.

Through the OPTIMUS UI, using the classification tab in the eclipse plugin, the developer enters the
following properties:

• publicIP

• endpoints (*)

• deploymentorder (*)

• InfrastructureRequirements (*)

• Detachable_resource
(*): Not implemented in this version of the UI.

Once that is finalized, OPTIMUS calculates and writes the classification value in the Application
Description JSON file. The different values for the classification field are detailed in Section 5 of this
document.

Figure 2. Tools that provide the properties of the microservices

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 12 of 24

www.decide-h2020.eu

2 Modelling Cloud services

Cloud services are important entities in the DECIDE integrated framework. Several tools, such as
OPTIMUS (both in its simulation and classification processes), ADAPT, and ACSmI, will use the
information related to these services and their Cloud Service Providers (CSPs).

The class diagram that models the cloud service offerings has not changed significantly since the
previous version of this document, and its structure is shown in Figure 3. This model mirrors the one
from ACSmI, presented in the document “D5.3 Initial Advanced cloud service meta Intermediator” [5].
All the information collected about the cloud services is stored in the ACSmI Service Registry. OPTIMUS
calls ACSmI to request information about the cloud services stored in there in order to select the most
appropriate ones following the process defined in sections 5 and 6 of this document.

Figure 3. Class diagram of cloud services (adopted from [5])

The figure above shows the relationship among the different classes involved in the definition of the
cloud services, as can be found in ACSmI.

The main ones are:

• Service: The different services that will be included in the DECIDE ACSmI Service registry.

• Service Class: This class is used by OPTIMUS when requesting for the corresponding service for
the deployment. Different classes of services are Database, Storage, Virtual Machine.

• Service Attribute Type: This entity determines the attribute types that belong to each Service
Class

• Service Class Attribute: This entity represents the different attributes that can be associated to
the different service classes. The relationship between the “Service Attribute Type” and the
“Service class” is made through “Service Class Attribute” entity as shown in Table 1.

• Service Attribute value: this is the value associated to an attribute for each service. There could
be a preliminary list of values for each one of them. For example, for the “Region” attributes,
the values could be “Ireland”, “France”, “US”, “Germany”, and so on.

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 13 of 24

www.decide-h2020.eu

Table 1. Attributes Vs cloud service Classes (adopted from [5])

Storage DataBase Virtual Machine

Region Region Region

Zone Zone Zone

Provider Provider Provider

Storage type Database type Virtual CPU cores

Storage subtype Database technology Frequency per core

Storage capacity Data transfer IN Memory

Storage data
redundancy

Data transfer OUT Instance storage

Availability Virtual CPU cores Optimized for

Request – Response
time: Storage
Performance

Database storage
capacity

Public IP

Legal Level Availability Underpinning
technology

Cost/Currency Transaction Unit (DTU):
Database performance

Availability

 Legal Level Response time: Virtual
Machine Performance

 Cost/Currency Legal Level

 Cost/Currency

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 14 of 24

www.decide-h2020.eu

3 Modelling Deployment Schemas

Once the simulation process finishes (c.f. D3.8 [2] for a detailed explanation), the best deployment
schemas are shown to the developer so that (s)he can confirm or select one of them. The selected
schema will be the one that will be used for the deployment when ADAPT tool starts to deploy the
application.

The structure of the deployment schema is also stored into the application description JSON file, as
well as in the repository for historical deployments.

A SchemaElement represents the relationship between a specific cloud service and a microservice or
a group of them. The figure 4 represents a SchemaElement and its properties.

Figure 4. Schema Diagram

Each of the SchemaElement objects is composed of the following properties:

• Index: generated number to identify this association between the csId and the microservices.
ACSmI uses it.

• microservices: Group of microservices id as represented in the Application Description. The ids
of the microservices that should be deployed in the cloud service mentioned below.

• csId: cloud service (CS) id: the id of a cloud service selected. The information about this cloud
service can be found in the ACSmI Service registry.

Equally, Non-Functional Requirements (NFRs) play an important role to identify the best deployment
schema. When OPTIMUS builds the request to ACSmI in order to obtain the most appropriate cloud
services, part of the features that those cloud services have to fulfil are indicated by the NFRs set by
the developer.

The NFRs are managed by the NFR Editor in both the DevOps framework and the Eclipse plugin
configurations. There are different types of NFR, as shown in the following Figure 5.

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 15 of 24

www.decide-h2020.eu

Figure 5. NFRs data structure

The "tags" property in the microservice class is related to the NFR that is defined with these same tags.

The NFR defined by a specific tag “moduleX”, will be associated to the microservices that have in the
“tags” property this same value.

For example, if there is a unique NFR defined, the Availability NFR:

"nfrs" : [{
 "type" : "Availability",
 "tags" : ["moduleX"],
 "abstractValue" : "Medium",
 "value" : 98.0,
 "unit" : "percentage"
 }],

If a microservice includes that same value in the “tags” property, it will mean that the developer
associated that NFR and its value to that microservice:

"microservices" : [{
 "id" : "eabad57d-7cae-4e2b-bebf-1d95b8534f53",
 "name" : "Queue-Master",
 "classification" : "Computing",
 "stateful" : false,
 "programmingLanguage" : "Java",
 "tags" : ["moduleX"],
 "publicIP" : false,
 "endpoints" : ["http://mircroservice1.com/service"],
 "deploymentOrder" : 0,
 "detachableResources" : [{
 "id" : "e524abef-6814-4724-bad6-4ac048c917e0",
 "name" : "none",
 "db" : true,
 "sql" : false,
 "classification" : "storage"
 }]
 }]

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 16 of 24

www.decide-h2020.eu

4 Classification tool

The main objective of the OPTIMUS classification tool is to be the basis to select a group or class of the
cloud services gathered into the ACSmI registry. These classification values are related to the cloud
services class recorded in the ACSmI registry, and are designed in a previous step of profiling
applications, with the aim of linking the microservices and the cloud services where they could be
deployed on. The classification value provides a first filter for knowing those appropriate cloud
services.

That mapping between the microservice and the cloud service where the microservice could be
deployed on, is based on the classification explained in section 5.

Once that classification is made, the developer can launch the simulation process which will use this
classification value for obtaining the group of cloud service that will take part of the selected
deployment schema. The (group of) cloud services where a microservice could be deployed will depend
on its classification. So, the process for requesting the proper cloud services to ACSmI will ask for a
subset of the cloud services stored in the registry and then OPTIMUS will select the best ones by
filtering on the NFRs and the characteristics related to the microservices to be deployed on them.

The access point to the classification tool will be trough OPTIMUS UI.

Figure 6. OPTIMUS classification tab in the Eclipse plugin of the tool.

The possible classification values for a microservice are currently identified as Computing, Computing
Public IP, Storage and DB. The result of the classification is stored into the Application Description JSON
file.

At this point of the project, the information about the microservices that can have an impact on their
classification is related to the nature of that piece of software. Each microservice can have associated
one or more detachable resources. The microservice would be the main software which the detachable
resources depensd on, setting a whole element to be deployed.

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 17 of 24

www.decide-h2020.eu

The microservices can be classified as "Computer" (by default) or "Computing Public IP". The
detachable resources that a microservice can have associated can be classified as "db" or "storage" (by
default). Because these resources are considered associated to the main microservice, they will be
deployed on the same cloud service as its main microservice.

A user manual of the classification tool is included in the deliverable D3.8 [2].

The classification tool is a component in the OPTIMUS architecture as it is shown in Figure 7

Figure 7. Classification module in OPTIMUS architecture.

The requirements for the classification tool and their status are described in Table 2.

Table 2. Requirements for OPTIMUS classification tool

Req. ID Description Status

WP3-PROFI-REQ1 Load/read information about the
application (components).

Status: Implemented in M12
version.

WP3-PROFI-REQ2 Classify the application, based on the
"stereotypes of the components" that we
defined in the design phase of the profiling
tool, and comparing it with the information
about the (component) application.

It will be completely implemented
in M30.

Status: It is an incremental
requirement. The current version
provides a classification but this
value can evolve, when analyzing
this current version and
improving this classification
depending on the source of the
information

WP3-PROFI-REQ3 Request the developer to confirm the
classification

Implemented in M24

Status: In this prototype the
developer confirms the
classification made when the
developer launches the
simulation with the assigned
classification.

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 18 of 24

www.decide-h2020.eu

Req. ID Description Status

WP3-PROFI-REQ4 Store the information about the
classification made.

Status: Implemented in M12

The task of storing the
classification is implemented
since M12. The classification
value stored was a first version of
the final value related to the WP3-
PROFI-REQ2 requirement.

WP3-PROFI-REQ5 Mechanisms for update the "stereotypes
of the components" information

Status: It will be implemented in
M30

The current version of the tool is integrated into the OPTIMUS tool plugin [2].

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 19 of 24

www.decide-h2020.eu

5 Mapping microservices and Cloud services

This mapping remains almost invariable with what was presented in the previous version of this
document [6].

Profiling an application or a microservice is a previous step that was performed in a previous stage of
the project, namely when the classification tool was designed and its detailed explanation can be found
in deliverable D3.4 [6].

Taking into account that this is the intermediate version for this subject, the profiling part was
described more deeply in that previous version, and the mapping section shows how that mapping is
done once the profiling is previously made.

Profiling in the context of DECIDE means “necessities for deployment”so as to identify the type of the
cloud service that the microservice needs in order to be properly deployed.

Considering that microservices are going to be deployed in a cloud service of a specific provider, the
profiling phase establishes the relationship between the types of necessities and these cloud services
and their providers.

As explained above, microservices can be classified as Computing or Computing Public IP, considering
their nature of executable software made by the developer, and sometimes requiring direct access to
them by the users.

The detachable resources are components used for storing data associated to those processes, like a
Database (DB) or Disk Storage.

Next, the classification is detailed:

• Computing.

Computing classification is assigned to components (microservices) that are implemented by a
developer and need some computing resources to be executed.

The classes of cloud services related to “Computing” are Virtual Machines.

• Computing with public IP.

This classification is for computing components that need a public IP to expose their services to
the external network. This is typically used for web applications.

The classes of cloud services related to “Computing with public IP” are Virtual Machines, but the
provider has to make available an external access to the users.

• Storage.

The Storage classification covers the detachable resources associated to a microservice that need
to store a big quantity of data, like Big data analytics, backups etc.

• DB

The DB classification includes components that access databases, as relational database or NoSQL
database.

The related cloud services are database services that are managed by the provider and can be
launched with no need of any installation from the user side.

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 20 of 24

www.decide-h2020.eu

6 Modelling simulation data

Once the classification is finished, the next steps are related to the OPTIMUS simulation tool and, for
running an appropriate algorithm, some additional structures will be needed.

The information to build the request for ACSmI is obtained by parsing the application description JSON
file. The filter where all the criteria are included, will be created taking into account the classification,
the cloud services classes related to it, the NFRs that the deployment has to acomplish, and the
properties associated to each of the miroservices that form part of the multi cloud application. The
M24 version of OPTIMUS does not include these structures. They are an approach for the next version
of the tool.

For each microservice involved, the algorithm will create several structures linked between them.
Figure 8 shows the first approach to these structures.

Figure 8. Simulation Structures.

(1) Msid : microservice identifier Id, from the application description JSON file
(2) rcrtyList: List of identifers of required resources types, from ACSmI registry. For example if the

microservice manages a DB, it could be deployed as a DB service provided by a specific vendor
or could be deployed in a VM being responsability of the developer to install the DB in the
machine.

(3) rcrtyid: required cloud service type identifyers, from ACSmI registry
(4) crtype: type of the cloud service or cloud resource from ACSmI registry (classid property)
(5) nfrList: list of NFRs set by the developer (for the microservice or inherited from the application

level), from the application description JSON file. These NFRs have to be fulfiled by the cloud
services considered as candidates (3).

(6) constraintsList: List of characteristics needed, provided by the developer (number of cores,
Public IP, …), from the application description JSON file. These constraints have to be fulfiled
by the cloud services considered as candidates (3).

(7) crList: List of cr (cloud resources or cloud services) obtained by asking ACSmI, from ACSmI
registry

(8) nfrlabel: name of the nfr (availability, performance, …), from the application description JSON
file

(9) nfrValue: the nfr value for a microservice established by the developer or obtained from the
application level, from the application description JSON file

(10) nfrType: the type of the value, for example %, from the application description JSON file

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 21 of 24

www.decide-h2020.eu

(11) cmpMethod: the criteria to compare this nfr objective to the nfr provided by the cloud service
(or resource). For example, if the nfr is availability and the value is 90%, then the algorithm will
search for greater values than that, and if the nfr is cost the algorithm will search for smaller
values. This information will be stored in a resource as a configuration aspect.

(12) crId: Cloud Resource Id, from ACSmI registry
(13) crtype: type of the cloud service or cloud reource in ACSmI registry (classid)
(14) constraintsList: list of characteristics of the cloud resource obtained from ACSmI, excluding

those considered as nfrs.
(15) nfrList: list of nfr, but this nfrs are the real nfrs obtained from ACSmI
(16) crweight: numeric value assigned to this instance of cloud resource, based on the level of

fulfilment of the requested nfrs. The NFRs assigned to the Cloud Resource will be compared to
the NFR objectives, applying the comparison Method (field 11) established by configuration.

When requesting ACSmI for cloud services (or cloud resources), the characteristics informed by the
developer (constraints) will be mandatory to be fulfilled. The NFRs will be ‘desired’ but if the return
message is null, that is, there are no resources matching those constraints, then the algorithm will
select the closest ones.

Once the weight (see field 16, crweight, in the previous list) is set by OPTIMUS to each of the possible
associations between the microservice and the cloud resource, the algorithm will perform several
permutations. This weight will be established taking into account the level of fulfillment of the NFRs
and constraints set by the developer. The aggregated weight, as a weight assigned to each of the
obtained combinations of individual associations, will be the addition of the individual rcrty weights in
this approach. These permutations will be sorted and OPTIMUS will select the five best to show them
to the developer in the simulation tab of the OPTIMUS eclipse plugin.

During the simulation process, as an example of the data used by the algorithm, the information stored
could be as shown in the Tables 3 and 4 below:

Table 3. Example of values associating microservices to cloud resources.

Msid (1) Rcrtyid (3) NfrList (5) ConstraintsList (6) CrId (12)

ms1 rcrty1 List of nfrs (json) for ms1 List of constraints (json) for ms1 cr1

ms1 rcrty1 List of nfrs (json) for ms1 List of constraints (json) for ms1 cr2

ms1 rcrty2 List of nfrs (json) for ms1 List of constraints (json) for ms1 cr3

ms2 rcrty1 List of nfrs (json) for ms2 List of constraints (json) for ms2 cr2

ms2 rcrty1 List of nfrs (json) for ms2 List of constraints (json) for ms2 cr4

ms2 rcrty2 List of nfrs (json) for ms2 List of constraints (json) for ms2 cr3

ms2 rcrty2 List of nfrs (json) for ms2 List of constraints (json) for ms2 cr5

ms2 rcrty2 List of nfrs (json) for ms2 List of constraints (json) for ms2 cr6

ms2 rcrty3 List of nfrs (json) for ms2 List of constraints (json) for ms2 cr7

ms2 rcrty2 List of nfrs (json) for ms2 List of constraints (json) for ms2 cr8

…..

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 22 of 24

www.decide-h2020.eu

There are several possibilities for associating a microservice with the cloud services where it could be
deployed. Each of these possibilites will have a weight, based on how the NFRs and the constraints
(characteristics of the microservice) are fulfiled by the cloud service or resource indicated.

Table 4. Weight of each cloud resource

CrId
(12)

Rcrtyid
(3)

ConstraintsList (14) NfrList (15) Crweight
(16)

cr1 rcrty1 List of cr1 constraints from
ACSmI

List of cr1 nfrs from
ACSmI

cr1weight

cr2 rcrty1 List of cr2 constraints from
ACSmI

List of cr2 nfrs from
ACSmI

cr2weight

cr3 rcrty2 List of cr3 constraints from
ACSmI

List of cr3 nfrs from
ACSmI

cr3weight

cr4 rcrty1 List of cr4 constraints from
ACSmI

List of cr4 nfrs from
ACSmI

cr4weight

cr5 rcrty2 List of cr5 constraints from
ACSmI

List of cr5 nfrs from
ACSmI

cr5weight

cr6 rcrty2 List of cr6 constraints from
ACSmI

List of cr6 nfrs from
ACSmI

cr6weight

cr7 rcrty3 List of cr7 constraints from
ACSmI

List of cr7 nfrs from
ACSmI

cr7weight

cr8 3crty3 List of cr8 constraints from
ACSmI

List of cr8 nfrs from
ACSmI

cr8weight

The result of the permutations - understanding this process as the result of grouping each of the
individual possibilities (microservice and cloud service) with the rest of individual possibilites for the
rest of the microservices - the aggregation of the weights and the final sorted list will be calculated
based on the structures shown on the tables above.

When the information ARCHITECT stores into the application description JSON file is more defined,
OPTIMUS will then be able to decide on more appropriate deployment schemas. For the DECIDE M24
prototypes, the information that ARCHITECT saves into the Application Description JSON file is a
description about the pattern or patterns selected. WP3 has a pending task to design and analyze the
impact of those selected pattern into the deployments to be executed.

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 23 of 24

www.decide-h2020.eu

7 Conclusions

This document has presented the current status of the data models related to the multi-cloud
application and how their properties impact onto the best deployment schema selection. There have
not been many critical modifications from the previous version in the M12 version but rather some
updates due to the needs of the each of the tools. The next version of this document will show the
final models handled when a developer uses DECIDE to deploy his or her multi-cloud application in the
best possible way.

The conclusions of the previous deliverable D3.4, Initial profiling and classification techniques [6],
remain valid since the DECIDE framework keeps handling a shared data structure across all DECIDE
tools, and hence does not need a specific editor for the developer to model his applications or
deployments.

The possibility of exporting the application data onto a CAMEL model has not been explored yet.
Althought it could be a valuable aspect for application owners, in case they want to migrate to a system
with this application representation; the decision of implementing this feature has been postponed
until the end of the project.

http://www.decide-h2020.eu/

D3.5 – Intermediate profiling and classification techniques Version 1.0 – Final. Date: 30.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 24 of 24

www.decide-h2020.eu

8 References

[1] DECIDE Consortium, "D2.5: Detailed architecture v2," 2018.

[2] DECIDE Consortium, "D3.8: Intermediate DECIDE OPTIMUS," 2018.

[3] DECIDE Consortium, "D3.14: Intermediate multi-cloud native application composite CSLA
definition," 2018.

[4] DECIDE Consortium, “GRANT AGREEMENT - Annex I: Description of Action,” 2016.

[5] DECIDE Consortium, "D5.3: Intermediate Advanced Cloud Service meta-Intermediator," 2018.

[6] DECIDE Consortium, "D3.4 Initial profiling and classification techniques," 2017.

http://www.decide-h2020.eu/

