
D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 1 of 32

www.decide-h2020.eu

Deliverable D3.9

Final DECIDE OPTIMUS

Editor(s): María José López

Responsible Partner: TECNALIA

Status-Version: Final ς v1.0

Date: 31/05/2019

Distribution level (CO, PU): CO

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 2 of 32

www.decide-h2020.eu

Project Number: GA 726755

Project Title: DECIDE

Title of Deliverable: D3.9 Final DECIDE OPTIMUS

Due Date of Delivery to the EC: 31/05/2019

Workpackage responsible for the
Deliverable:

WP3 ς Continuous Architecting

Editor(s): TECNALIA

Contributor(s): TECNALIA

Reviewer(s): Kyriakos Stefanidis (FhG)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5

Abstract: This software deliverable comprises the final OPTIMUS
simulation engine. This deliverable is the result of T3.2
and T3.3. The software will be accompanied by a
Technical Specification Report

Keyword List: Simulation, classification, Eclipse IDE, plugin, java,
Algorithm, Genetic

Licensing information: This program and the accompanying materials are
made available under the terms of the Eclipse Public
License 2.0 which is available at
https://www.eclipse.org/legal/epl-2.0/

The document itself is delivered as a description for
the European Commission about the released
software, so it is not public.

Disclaimer ¢Ƙƛǎ ŘŜƭƛǾŜǊŀōƭŜ ǊŜŦƭŜŎǘǎ ƻƴƭȅ ǘƘŜ ŀǳǘƘƻǊΩǎ ǾƛŜǿǎ ŀƴŘ
views and the Commission is not responsible for any

use that may be made of the information contained
therein

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 3 of 32

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 23/05/2019 Version ready for internal review TECNALIA

V0.2 27/05/2019 Editorial changes from internal review FHG

V0.3 28/05/2019 Modifications attending the internal
review

TECNALIA

V1.0 30/05/2019 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 4 of 32

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 4

List of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 Implementation ... 9

2.1 Functional description ... 9

2.1.1 Fitting into overall DECIDE Architecture ... 12

2.2 Technical description ... 14

2.2.1 Prototype architecture .. 14

2.2.2 Components description ... 15

2.2.3 Technical specifications ... 18

2.2.3.1 DECIDE OPTIMUS Classification tool ... 18

2.2.3.2 DECIDE OPTIMUS Web UI module .. 18

2.2.3.3 DECIDE OPTIMUS Simulation .. 19

3 Delivery and usage .. 20

3.1 Package information ... 20

3.2 Installation instructions ... 22

3.2.1 DECIDE OPTIMUS Classification tool ... 22

3.2.2 DECIDE OPTIMUS Simulation .. 22

3.2.3 DECIDE OPTIMUS DevOps module (OPTIMUS UI) ... 23

3.3 User Manual .. 23

3.3.1 DECIDE OPTIMUS Classification tool ... 23

3.3.2 DECIDE OPTIMUS web UI module ... 27

3.4 Licensing information .. 29

3.5 Download .. 30

4 Conclusions .. 31

5 References ... 32

List of Figures

FIGURE 1. OPTIMUS IN DECIDE ARCHITECTURE. .. 13
FIGURE 2. OPTIMUS INTERFACES WITHIN DECIDE FRAMEWORK ... 13

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 5 of 32

www.decide-h2020.eu

FIGURE 3. OPTIMUS HIGH LEVEL ARCHITECTURE ... 14
FIGURE 4. ARCHITECTURE OF OPTIMUS WEB UI MODULE ... 15
FIGURE 5. OPTIMUS COMPONENT DIAGRAM .. 15
FIGURE 6. COMPONENTS AND SERVICES CREATED IN OPTIMUS UI WEB .. 16
FIGURE 7. OPTIMUSLISTPAGECOMPONENT ... 17
FIGURE 8. GENERATED JAVA CLASSES BY SWAGGER. .. 19
FIGURE 9. ECLIPSE SOURCE FOLDER STRUCTURE OF OPTIMUS PLUGIN COMPONENT. ... 20
FIGURE 10. ECLIPSE SOURCE FOLDER STRUCTURE OF OPTIMUS SERVER COMPONENT. ... 21
FIGURE 11. STRUCTURE OF THE DECIDE OPTIMUS WEB UI CODE. .. 22
FIGURE 12. CREATION OF A NEW FILE. ... 23
FIGURE 13. SELECTION OF THE DECIDE EDITOR FILE. .. 24
FIGURE 14. SELECTION OF THE DECIDE JSON FILEΩS INFORMATION. ... 24
FIGURE 15. INITIAL NEW FILE. .. 25
FIGURE 16. CLASSIFICATION TAB. ... 26
FIGURE 17. SIMULATION TAB. .. 26
FIGURE 18. DECIDE OPTIMUS WEB UI MAIN PAGE. ... 27
FIGURE 19. DECIDE OPTIMUS WEB UI CLASSIFICATION PAGE. .. 27
FIGURE 20. DECIDE OPTIMUS WEB UI DETACHABLE RESOURCES. .. 28
FIGURE 21. DECIDE OPTIMUS WEB UI SIMULATION. ... 28
FIGURE 22. DECIDE OPTIMUS WEB UI PREFERRED PROVIDER ... 28
FIGURE 23. DECIDE OPTIMUS WEB UI SIMULATION .. 29
FIGURE 24. DECIDE OPTIMUS WEB UI DEPLOYMENT SCHEMA SELECTION .. 29

List of Tables

TABLE 1. REQUIREMENTS COVERED BY DECIDE OPTIMUS TOOL. ... 10

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 6 of 32

www.decide-h2020.eu

Terms and abbreviations

ACSmI Advanced Cloud Service meta-Intermediator

CS Cloud Service

DB Database

UI User Interface

JSON JavaScript Object Notation

NFR Non-Functional Requirements

VH Violation Handler

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 7 of 32

www.decide-h2020.eu

Executive Summary

This document contains the technical description of the DECIDE OPTIMUS tool, in its both versions
plugin, web application as well as their server component, in its final version. The DECIDE OPTIMUS
offers to the developer the five best possible deployment schemas for the multi-cloud application
based on the classification of the microservices that compose the application, the defined Non-
Functional Requirements (NFRs), and the cloud services handled by ACSmI (Discovery).

The new contribution to this document is the description of the DECIDE OPTIMUS UI, the web
application integrated in the DECIDE DevOps framework that complements the Eclipse plug in and that
has been newly developed for this final version. OPTIMUS UI connects to the OPTIMUS simulation
service the same way the Eclipse plug in does and offers the best results to the developer for the multi-
cloud schema selection.

During the last year the decision was taken to include this flavour of DECIDE OPTIMUS, through such
an UI and integrated in the DECIDE DevOps framework, in order to increase the usability of DECIDE as
it allows the DevOps teams to follow the whole DECIDE workflow without leaving the DevOps
Framework.

Further to the description of the functional and technical aspects of OPTIMUS, this document includes
sections on how to install and use DECIDE OPTIMUS, and the license under it is published.

The general architecture and design of DECIDE OPTIMUS tool is described in this document, appending,
amending and extending the description already offered in previous deliverables D3.7 [1] and D3.8 [2].
While the main architecture and technical description from the Eclipse plug in version of OPTIMUS has
not been changed, except for the new functionalities integrated, the OPTIMUS UI version has been
completely developed from scratch in this iteration. This content is completely integrated in the text
of the document. The general requirements and functionalities of OPTIMUS can be found in D3.4 [3].

This M30 version of the tool includes:

¶ New functionalities added to the previous prototype.

¶ Improvements to the existing functionalities in the M24 prototype

¶ DECIDE OPTIMUS UI, integrated in the DevOps Framework allowing the same functionality as
the DECIDE OPTIMUS plugin tool.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 8 of 32

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

This document presents the functionalities, design and development of the DECIDE OPTIMUS tool in
its final version. The functionalities are as planned, and the only modifications that can be made in the
future are those that arise from the integration and use cases testing processes.

1.2 Document structure

The global architecture and the functionalities covered by this tool, as well as all the instructions for
installing the software and using it, are described in this deliverable.

The sections included in it cover both parts of the DECIDE OPTIMUS tool, the eclipse plugin and the
DevOps Framework module.

This document is composed of four (4) main sections:

1. General introduction about the content and structure of the document.
2. The implementation of the DECIDE OPTIMUS, including the classification and OPTIMUS

editor (eclipse plugin and web application) and the REST service generated with Swagger
[4]. The requirements that the tool covers, the architecture and the description of its main
components. Also, the technical development aspects and how OPTIMUS fits in the global
DECIDE architecture are included.

3. The delivery and usage section, about how to install it, how to use it and any licensing
information to run the prototype.

4. Conclusions

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 9 of 32

www.decide-h2020.eu

2 Implementation

2.1 Functional description

DECIDE OPTIMUS is aimed at providing the best possible application deployment schemas, based on
the non-functional requirements set by the developer and the requirements of the multi-cloud
application, automating the provisioning and selection of cloud services offering for multi-cloud
applications. This functionality of the tool has been set since the beginning of the project.

The DECIDE OPTIMUS tool consists of three separate parts, the first one covers the classification
process through a local eclipse plugin installation, the second one has the same functionality as the
plugin but integrated as a module of the DECIDE DevOps Framework, and the third one can be invoked
by that plugin or by the DECIDE Framework as it is a REST [5] service by which the simulation process
can be launched.

Functionalities:

The main functionalities of the DECIDE OPTIMUS are:

1. Multi -cloud application classification. This functionality consists in associating the
components (microservices) that form the multi-cloud application to a group of Cloud Services
where they could be deployed through a classification type.

For this purpose, the profiling of the microservices of the multi-cloud applications is a way to
match the characteristics of those microservices with the group of Cloud Services features
where they will be deployed.

This classification is based on the information provided by the developer and the information
ƘŀƴŘƭŜŘ ōȅ ά¢ȅǇŜǎ ƳŀƴŀƎŜƳŜƴǘέ ǎǳōŎƻƳǇƻƴŜƴǘΦ

This final version presents the UI for introducing details about the application and the
microservices, such as the name of the multi-cloud application, the name of each microservice
that it is composed of, if it has a detachable resource, if this resource access to a DB or not,
and some characteristics of the microservice. The classification associated is presented in a
combo with the value of it, allowing to the developer to change this value.

2. Theoretical deployment generation. When the classification is made, and the NFRs informed
by the developer, OPTIMUS prepares a request to invoke ACSmI Discovery and obtains the
cloud services that fulfil the requirements of the microservices for their deployment.

This request is composed of generic Cloud Services and the list of resources that the
microservices need. This functionality requires interacting with the ACSmI API to obtain the list
of Cloud Services that meet the criteria requested.

The request to ACSmI discovery is built and performed based on the classification of the
microservice, the characteristics associated to it and the NFRs for the application level. The
aggregate and disaggregate values needed for calculating the level of fulfilment of the NFRs
are implemented as part of the simulation algorithm.

3. Simulation. The combination of the different optimized possibilities of deployment,
considering the theoretical and individual deployment possibilities for each microservice and
the list of cloud services (from ACSmI Discovery) that suit them, is ranked to select the five
best of them and are presented to the developer to confirm the first of them or to select
another one of that list of five. This process is implemented using a genetic algorithm for
combining and optimizing problems, detailed in D3.6 [6].

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 10 of 32

www.decide-h2020.eu

The Schemas include information about the id of the cloud service in the ACSmI registry and
the ids of the microservices that are set to deployed on it. This information is stored into the
historical repository managed by the App Controller.

The Eclipse plugin and the OPTIMUS UI web launch the simulation process for the current
application and the result with the five best deployments schemas is shown to the developer
to select one of them. Then he or she can store it in the application description, and therefore
in the schemas history, or launch again the simulation process, changing some data about the
application.

It is the responsibility of the developer to upload the application description JSON file to the
repository where it belongs, before and after launching the simulation, when using the eclipse
plugin OPTIMUS tool. For that, the eclipse framework where the application description JSON
file has been created or cloned, allows to commit the file once the information needed for the
simulation is completed. If the developer needs to use another DECIDE tool inside the DevOps
framework, he should upload again the JSON file. The OPTIMUS UI part allows to save directly
the modifications in the repository associated to the application.

It has been implemented the interface for the ADAPT Violation Handler tool, described in D4.3
[7] section 3.1.3, which allows launching a simulation through the DevOps Framework when a
violation occurs.

Requirements:

The requirements satisfied by this final version are described in the Table 1.

The five first rows are related to the classification process, performed by the Eclipse plugin and web
part of OPTIMUS, the rest of them are about the simulation process.

Table 1. Requirements covered by DECIDE OPTIMUS tool.

Req. ID Description Status Requirement coverage
WP3-PROFI-REQ1 Load/read information

about the application
(components).

Satisfied The tool reads the information
stored in the application
description about the
microservices and the NFRs.

WP3-PROFI-REQ2 Classify the application,
based on the άstereotypes
of the componentsέ that
we defined in the design
phase of the profiling tool,
and compare it with the
information about the
(component) application.

Satisfied The classification is made
considering the information
about the microservices that
the tool knows, from the
DECIDE.json file.

WP3-PROFI-REQ3 Request the developer to
confirm the classification

Satisfied The confirmation takes place
when the developer saves the
result of the classification into
the application description
JSON file.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 11 of 32

www.decide-h2020.eu

Req. ID Description Status Requirement coverage
WP3-PROFI-REQ4 Store the information

about classification made.
Satisfied The information is written in

the DECIDE.json file.

WP3-PROFI-REQ5 Mechanisms for updating
the "stereotypes of the
components" information

Satisfied Through the properties file, the
tool allows to indicate the
different classifications
available and their
correspondence to the Cloud
Services classes

WP3-OPTI-REQ1 The OPTIMUS tool shall be
capable of reading the
non-functional
characteristics of the app
from NFR DB

Satisfied The information in the
DECIDE.json file is read.

WP3-OPTI-REQ2 The OPTIMUS tool shall be
capable of reading the
classification of the app (or
its components)

Satisfied The information in the
DECIDE.json file isread.

WP3-OPTI-REQ3 OPTIMUS will analyse the
application's NFRs and the
classification (FR) in order
to ask ACSmI for
information about cloud
services that cover the
requirements (F/NF) of the
multi-cloud application.

Satisfied Implemented the creation of a
filter to ask ACSmI about the
cloud services that fulfil the
requirements, considering the
NFRs, and the characteristics of
the microservices.

WP3-OPTI-REQ4 For each component of the
multi cloud application,
OPTIMUS engine builds the
theoretical composition of
services needed to the best
possible deployment
topology

Satisfied Obtaining the cloud service for
a specific microservice is part of
the optimization algorithm in
the Simulation process.

WP3-OPTI-REQ5 Once OPTIMUS engine
runs the simulations for
each component of the
multi cloud application,
each of them will be
ranked

Satisfied The ranking is part of the
Simulation process, and the
algorithm implemented.

WP3-OPTI-REQ6 OPTIMUS shall use
algorithms such as genetic
algorithms, Harmony
search, or Dandelion codes
to provide a set of
potential combinations of
cloud services that fulfil
the established user
requirements. This process
will go after the theoretical
deployment generation

Implemented Testing
integration

The NSGA-II Algorithm will
search through different
combinations of Cloud Services
for the microservices and will
find the perfect combination of
them which could result in a list
of five best solutions.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 12 of 32

www.decide-h2020.eu

Req. ID Description Status Requirement coverage
and will combine the
results of each of the
possibilities.

WP3-OPTI-REQ7 OPTIMUS shall provide the
developer with the
information about the
proposed deployment
schema (those with the
highest rank) for the
application to cover the
required NFR and FR, and
the technological risk that
each of these
configurations imply. This
will show in the UI and will
require confirmation from
the developer

Satisfied The information about the
selected schema is the schema
itself, with the id of the cloud
service where a group of
microservices can be deployed,
and the ids and names of that
group of microservices.

WP3-OPTI-REQ8 OPTIMUS tool can define
new schema from
developer side
(proactively) and from
results coming from ADAPT
(reactively) to set up a new
deployment schema, if a
malfunctioning of a
deployed multi-cloud
application occurs

Implemented. Testing
integration

Implemented the possibility for
launching the simulation by the
ADAPT Violation Handler
module.

WP3-OPTI-REQ9 OPTIMUS shall provide a
forecast on some
important system
characteristics such as
performance, cost, or
security that can motivate
an optimization decision

Implemented. Testing
integration

The Simulation process
optimizes the deployment
schema taking into account the
available characteristics of the
CS.

WP3-OPTI-REQ10 DECIDE OPTIMUS [..] will
provide [..] automation of
the provisioning resources
and deployment schemas
for multi-cloud native
applications

Rejected Rejected because it is already
included in WP3-OPTI-REQ4,
WP3-OPTI-REQ5 AND WP3-
OPTI-REQ7

2.1.1 Fitting into overall DECIDE Architecture

The global DECIDE architecture is shown in Figure 1 and it is described in the deliverable D2.5 [8]. The
role of OPTIMUS in this global architecture has not changed compared to the previous version
delivered in D3.8 [2].

Both OPTIMUS eclipse plugin and OPTIMUS UI web application have the same functionality and
therefore are described in this section as a unique OPTIMUS.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 13 of 32

www.decide-h2020.eu

Figure 1. OPTIMUS in DECIDE architecture.

The interaction with OPTIMUS and the rest of the DECIDE tools remains as planned and was described
in the previous deliverable [2].It is presented in the Figure 2.

Figure 2. OPTIMUS interfaces within DECIDE framework

These interactions are as follows:

¶ ARCHITECT: This is the starting point to the DECIDE framework when the developer wants to use
OPTIMUS tool. It provides a General Editor in eclipse with which the information of the application
will be stored into the application description JSON file. Moreover, it is integrated in the DevOps
framework with the same functionality.

¶ ACSmI: The information about the cloud services where the microservices can be deployed on, is
provided by ACSmI Discovery.

¶ ADAPT: When a violation of the MCSLA is discovered, ADAPT Violation Handler triggers OPTIMUS
to obtain a new best deployment schema.

¶ Application Controller: The structure of the application description JSON file is defined by the
Application Controller component, as well as the operations that can be performed with it.
Moreover, the deployment schema obtained by OPTIMUS Simulation is managed also through the
Application Controller library when storing it into the historic repository and consulting it to avoid
a deployment under the same schema.

¶ NFR Editor: The NFR Editor is part of the General Editor in ARCHITECT, and part of the DevOps
framework. For each microservice the developer can specify Non-Functional Requirements
associated to it. OPTIMUS tool uses the information about the NFRs to build the request to ACSMI
Discovery and obtain the best schema for the deployment.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 14 of 32

www.decide-h2020.eu

2.2 Technical description

In this section, the technical aspects about the development of this version of the OPTIMUS prototype
are presented. It includes both versions, the eclipse plug in and the UI web app.

2.2.1 Prototype architecture

The general architecture for OPTIMUS tool is shown in Figure 3.

Figure 3. OPTIMUS High level architecture

OPTIMUS Application Classification component involves both parts of OPTIMUS, the eclipse plugin and
the web part. Both have the same role in this architecture although they are implemented in a different
way, as it can be seen in the following sections.

The rest of the components are referred in the Simulation process, being it a common part for the
implementation. It has been developed as a swagger server and both classification modules, eclipse
and web, call to the corresponding services from that server.

The following figure depicts the architecture of OPTIMUS UI web module. OPTIMUS UI web module is
an Angular module (ngModule) that wraps different components, services and pages that are related
to the OPTIMUS tab in DECIDE DevOps Framework.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 15 of 32

www.decide-h2020.eu

Figure 4. architecture of OPTIMUS web UI module

2.2.2 Components description

The main components detailed in the OPTIMUS general architecture are represented in Figure 5.

Figure 5. OPTIMUS component diagram

Application classification

The Application Classification component is presented to the developer as a tab of the OPTIMUS
eclipse plugin and as a tab of the DevOps framework. Through this UI the developer provides the
information about the application and the microservices which it is composed of, so as to classify each
of those microservices.

The App Classification subcomponent will match the information stored about the different possible
classifications and the characteristics associated to each of the multi-cloud application microservices,
writing the corresponding value into the application description JSON file using the Application
controller library.

The classification process is explained more in-depth in the DECIDE deliverable D3.5 Intermediate
profiling and classification techniques [9]

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 16 of 32

www.decide-h2020.eu

Theoretical deployment generation

Considering the classification of each microservice, OPTIMUS can associate the cloud service class that
can be candidate for its deployment. Knowing the cloud services objectives, together with the NFRs
and some characteristics established by the developer, OPTIMUS builds a request to obtain from
ACSmI the cloud services that fit the requirements set in that request.

Processing the ACSmI answer, storing each possibility as a structured object of information, the
Theoretical Deployment preparation arranges all the input that the Simulation component needs.

Simulation

Once the request is made to ACSmI and the information about the cloud services that are suitable for
the microservices, the tool analyses the level of fulfilment of this association with the requirements
stablished by the developer for that microservice, including the NFRs.

The best combination of Cloud Services for the set of microservices that constitute the multi cloud
application is deduced. For obtaining that optimized combination of elements, the NGSA-II Algorithm
is used.

Once the five best ranked schemas have been obtained, they are presented to the developer to
confirm it, and then sent the selected one to the App controller.

This Simulation phase can be also triggered by DECIDE ADAPT Violations Handler (VH) and in this case
the schema is best one and it will be stored automatically in the application description JSON file.

More detailed information about the Simulation process and the algorithm implemented can be found
in the D3.6 deliverable [6].

The OPTIMUS web UI module has been designed and implemented to work as an independent visual
part in the web application, being modular and flexible to the data it visualizes and interacts.

OPTIMUS UI web has a strong dependency with Angular Material components, that are inside Material
Module. These modules give the basic components for the construction of the UI page layout in
OPTIMUS UI web part.

The created components and services are declared inside OPTIMUS Module (An Angular declaration
type for modules), that allows the architecture to be better organized and clearer to understand.

The following diagram shows the components and services created in OPTIMUS web UI, and the
dependency with Material Module:

Figure 6. Components and services created in OPTIMUS UI web

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 17 of 32

www.decide-h2020.eu

There are 5 component classes and 1 injection service that are part of OPTIMUS web UI Module. The
description of these modules is as follows:

1. OPTIMUSListPageComponent: this is the main page component for the OPTIMUS section in
DECIDE DevOps Framework and wraps all the other components. The page is a composition of
a microservices list sideview, and a main tabbed view: one tab for the microservice fields
edition and another tab for the OPTIMUS simulation execution and the view of the schema
results based on the criteria of OPTIMUS Simulation.

Figure 7. OPTIMUSListPageComponent

2. OPTIMUSComponent: the visible component from DECIDE DevOps Framework. Its main task
is to serve as a container for the OPTIMUSListPageComponent and it subscribes to the selected
application data.

3. SimulationResultComponent: the main responsibility of this component is to obtain the
schema results from the OPTIMUS REST requests and to visualize it with the required fields as
an animation with the JSON mapped data. This component will connect to OPTIMUS in the
real scenario.

4. LoadingPlaceholderComponent: this is a non-functional and only aesthetic animated
component. Its main purpose is to preview a size of square, when waiting for the microservices
list request from the server.

5. SimulationProviderComponent: this component makes a request to ACSmI services, to obtain
a list of the multi-cloud valid providers for the simulation. The selection of the providers is a
criterion required for the OPTIMUS Simulation. This component is inserted in the simulation
tab before simulation button.

6. ApplicationDescriptionService: this service has the responsibility to call the requests for the
OPTIMUS simulation. There are three methods and there must be a future work testing and
implementing the defined requirements

a. getApplicationProviders: call to the providers list via REST to ACSmI Discovery.
b. getApplicationDescription: call to the selected application and get the updated

application description as JSON document. It internally calls to DecideGatewayService
and connects to Application Controller.

c. createSimulation: with the selected parameters it makes a new simulation request to
OPTIMUS.

d. getSimulationResultsSchema: makes an http request to OPTIMUS via REST and gets a
JSON document with the schemas that OPTIMUS calculates (maximum 5 schemas).

e. saveSelectedSchema: after checking the resultings schemas, the user can select the
more suitable one and save it to Application Description.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 18 of 32

www.decide-h2020.eu

2.2.3 Technical specifications

The final DECIDE OPTIMUS prototype has been developed as three separate parts:

1. DECIDE OPTIMUS Classification tool: in the form of an Eclipse plugin with the structure of a
multipage editor. This part of the tool must be installed in an Eclipse framework for its use by
the developer.

2. DECIDE OPTIMUS DevOps module: developed as an Angular Module. Integrated in the DECIDE
DevOps Framework.

3. DECIDE OPTIMUS Simulation: swagger server that provides several REST services that allows
to be invoked from different parts of other tools or software elements. This module can be
triggered by the Violation Handler or launched by the DECIDE OPTIMUS DevOps module when
the developer pushes the Simulation button.

2.2.3.1 DECIDE OPTIMUS Classification tool

Moreover, the plugin is executed together with the General Editor part of ARCHITECT. The
implementation has been made using the extensions mechanism that allows adding tabs from a plugin
to another previously launched.

The classification tool is part of the maven ARCHITECT project, as a maven module of it.

The multipage editor consists of three tabs. The first of them is part of the General Editor and contains
the Application Description JSON file. It will reflect the information that the developer introduces using
the other tabs. The second tab is for the classification, where a group of microservices are shown if
they are in the application description JSON file. The third tab corresponds to the simulation process,
from where the simulation can be launched, and its result can be seen.

For developing the graphical object related to the OPTIMUS UI (multipage editor), the WindowBuilder
[10] Eclipse plugin has been used, which has been developed to create Java GUI applications by
dragging and dropping elements from a palette onto a design surface, in this case the tabs of the
multipage editor. The structure of the developed plugin has five (5) basic elements and each of them
is a java class element:

¶ Classification.java: it manages the appearance of the Classification tab and the processes
assigned to each element on it.

¶ MicroserviceClassification.java: it is the element that is responsible for creating the group of
objects to gather the information about one microservice. Each time the developer pushes the
"Add microservice" button, the same group of objects will be presented for him to fill them
with the corresponding information.

¶ SimulateSchema.java: it manages the Simulation tab. This OPTIMUS element will create this
tab and will include the results of the simulation, that is, the best schemas for the deployment.

¶ ClassificationPageBuilder: This is the element that implements IPageBuilder and creates the
additional tab for the classification. It follows the rules for working with extensions.

¶ SimulationPageBuilder: This is the element that implements IPageBuilder and creates the
additional tab for the simulation. It follows the rules for working with extensions.

2.2.3.2 DECIDE OPTIMUS Web UI module

Programming Language: Typescript
Framework: Angular ^7.2.8
NPM Dependencies:

 "rxjs": "^6.4.0",
 "@angular/animations": "^7.2.8",

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 19 of 32

www.decide-h2020.eu

 "@angular/cdk": "^7.2.8",
 "@angular/common": "^7.2.8",
 "@angular/compiler": "^7.2.8",
 "@angular/core": "^7.2.8",
 "@angular/forms": "^7.2.8",
 "@angular/http": "^7.2.8",
 "@angular/material": "^7.2.8",
 "@angular/platform-browser": "^7.2.8",
 "@angular/platform-browser-dynamic": "^7.2.8",
 "@angular/platform-server": "^7.2.8",
 "@angular/router": "^7.2.8",

2.2.3.3 DECIDE OPTIMUS Simulation

On the other hand, the REST Server has been created using the Swagger specification [4] for defining
the service and the format to manage it.

This specification is a JSON file from which Swagger generates the server with the REST service and the
template for the implementation of the service, and the client, which will be the library for using the
service from other modules or tools.

The template generated by Swagger for the server has been added to the Eclipse development
framework as a Maven [11] project, so, once the lines of code needed for providing the planned
functionality have been introduced, the server can be deployed in the integration framework for
testing it.

The main elements developed in this project are three (3) class elements described as follows:

¶ Bootstrap.java: This is the starting point when the REST service generated by Swagger is called.
It has been generated by Swagger and completed by TECNALIA.

¶ SimulatorThread: This class contains the optimization process to obtain the schema,
performing the request to ACSmI discovery and returning the best schema to the Eclipse plugin
by implementing an NGSA-II algorithm, or saving it into the application description JSON file in
case the VH has been the service caller.

¶ ApplicationApiServiceImpl: This file gathers the different methods related to the available REST
services that the server publishes. It has been generated by Swagger and completed by
TECNALIA.

¶ OPTIMUSProblem.java: The class that create and define a OPTIMUS problem for being solved
by the NSGA-II algorithm.

More java elements are generated by Swagger and are included in the Maven Eclipse project. They

can be seen in Figure 8.

Figure 8. Generated java classes by Swagger.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 20 of 32

www.decide-h2020.eu

3 Delivery and usage

3.1 Package information

The structure of the OPTIMUS plugin package in Eclipse is as follows:

Figure 9. Eclipse Source folder structure of OPTIMUS plugin component.

The package eu.DECIDEh2020.optimus.editors contains the source code for the OPTIMUS plugin.

The server with the corresponding code for the REST services is a separate Maven project and has the
following structure:

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 21 of 32

www.decide-h2020.eu

Figure 10. Eclipse Source folder structure of OPTIMUS server component.

The different packages depicted above contain the following elements:

¶ (main) eu.decideh2020.optimus.server.api: Where the main elements of the server
implementation are placed, the starting point and the code for the simulation.

¶ (main) eu.decideh2020.optimus.server.api.factories: A generated file for starting and creating
the service.

¶ (main) eu.decideh2020.optimus.server.api.impl: Elements needed for the implementation of
the main java files placed in (main) eu.decideh2020.optimus.server.api package.

¶ (gen) eu.decideh2020.optimus.server.api: Elements to be internally used, generated by
swagger.

¶ (gen) eu.decideh2020.optimus.server.model: Some data structures generated by swagger and
completed by TECNALIA.

The following picture shows (partially) the file structure in the code from DECIDE OPTIMUS Web UI
integrated in the DevOps framework.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 22 of 32

www.decide-h2020.eu

Figure 11. Structure of the DECIDE OPTIMUS Web UI code.

3.2 Installation instructions

The DECIDE OPTIMUS tool has different parts of code, each of them with a different method for
installing it.

3.2.1 DECIDE OPTIMUS Classification tool

The installation of the eclipse plugin requires the eclipse IDE.

The software needed for running OPTIMUS classification is available in this url:

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

For running OPTIMUS Classification tool, via Eclipse java project:

a. Start Eclipse IDE (Eclipse Oxygen)
b. Clone the repository indicated above
c. Import the following projects:

i. Architect and the rest of projects that depend of it. (as a maven project)
ii. AppController (as a maven project)
iii. Cloud-patterns (as a maven project)

d. Clean and install cloud-patterns and AppController projects.
e. Clean package the architect project.
f. Run configurations as an Eclipse Application.

It is pending for the integration to be done, so a proper update site method will be implemented at
the end.

3.2.2 DECIDE OPTIMUS Simulation

For installing and running the server the following software is needed:

- Docker to create the container.

To get the server up and running it must to follow these steps:

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 23 of 32

www.decide-h2020.eu

1. Download the source code from the DECIDE repository.

git clone

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

2. Go to the folder where the docker file is located:

cd <OPTIMUS server folder> \
eu.decideh2020.int.optimus.server.src.dvp \ src \ main \ docker

i. Build the docker image with the following arguments:

docker build - f / docker.optimus.server - t

tecnalia/eu.decideh2020.int. optimus.server

ii. Run the docker image with the following arguments:

docker run - d -- restart=always - p 8 090 :8 090 -- name

eu. decideh2020.optimus.server

tecnalia/eu.decideh2020.optimus.server

3.2.3 DECIDE OPTIMUS DevOps module (OPTIMUS UI)

Docker and docker compose must be installed in your OS. (Tested version Docker-CE 18.09)

The steps for the correct installation and running are the following:

 άƎƛǘ ŎƭƻƴŜ git@git.code.tecnalia.com:decide/devops.gitέ
 άŎŘ ŘŜǾƻǇǎέ
 άŘƻŎƪŜǊ-ŎƻƳǇƻǎŜ ōǳƛƭŘέ
 άŘƻŎƪŜǊ-ŎƻƳǇƻǎŜ ǳǇέ
 Connect locally to http://localhost:4200 from the browser and go to OPTIMUS section.

Moreover, OPTIMUS Web UI part will be accessible through the DECIDE DevOps Framework, so it is
not needed a specific installation.

3.3 User Manual

3.3.1 DECIDE OPTIMUS Classification tool

Once the developer runs the plugins, he must create a new DECIDE JSON file, containing the application
description, licking right mouse button and selecting New Ą Other

Figure 12. Creation of a new file.

In the next window, select άDECIDE projectέ from the DECIDE Wizards option

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git
mailto:git@git.code.tecnalia.com:decide/devops.git
about:blank

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 24 of 32

www.decide-h2020.eu

Figure 13. Selection of the DECIDE Editor file.

Then, indicate the Project name, the local folder, and the information about the git repository where
ǘƘŜ W{hb ŦƛƭŜ ƛǎ ǎǘƻǊŜŘ ŦƻǊ ά/ƭƻƴŜ wŜƳƻǘŜ wŜǇƻǎƛǘƻǊȅέ option.

Figure 14. Selection of the DECIDE JSON ŦƛƭŜΩǎ information.

When selecting ǘƘŜ άFinishέ button, the initial content of the file is shown in the first tab of the editor.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 25 of 32

www.decide-h2020.eu

Figure 15. Initial new file.

The first three tabs correspond to the current version of the General Editor and show the JSON file in
raw (DECIDE.json tab), the information as a UI (Project tab) and the information about the NFRs (NFR
Editor tab). The forth tab is the corresponding to the Patterns editor. These tabs are not part of the
OPTIMUS tool and they are implemented under the ARCHITECT tool.

OPTIMUS and ARCHITECT are two tools that can be executed in an Eclipse framework, so they need
first a General Editor to allow the developer to introduce the general data about the Application, as
well as the DevOps framework does.

The first OPTIMUS tab is the Classification tab. For example, consider that the new file has two
microservices, and the classification tab reflects this situation:

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 26 of 32

www.decide-h2020.eu

Figure 16. Classification tab.

The simulation tab is the area where the developer, once the information about the microservices has
been fulfilled, can launch the simulation for that specific application. The developer also can assign a
preferred provider to force DECIDE Simulation to obtain only Cloud Services from that provider.

Figure 17. Simulation tab.

For classifying a microservice in the Classification tab, this prototype assigns the "Computer" value by
default allowing the developer to change it to "Computing Public IP" if he considers it more
appropriate.

Each microservice can have a detachable resource associated to it, of which the developer has to
introduce the name and select the DB aspect when corresponds. In that moment, the value of its
classification will change, and it will show the value "db", otherwise the value will be "storage".

More microservices can be added using the General Editor Tab, but the detachable resources can only
be specified through the Classification tab. These elements are considered elements associated to a

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 27 of 32

www.decide-h2020.eu

principal microservice, and in the simulation they will be deployed in the same Cloud Service as its
main microservice.

The result of the simulation appears in the tab, allowing to the developer for selecting one of the five
Deployment Schemas presented.

The elements of each Deployment Schema are:

- index: internal index to identify a specific association of CSid and microservices Ids. It is useful
for the further deployment process. Not appearing in this tab.

- List of elements composed by:
o Group of microservices id and name: The ids of the microservices that should be

deployed in the Cloud Service mentioned bellow and their names.
o Cloud Service id: The id of a selected Cloud Service. The information about this CS can

be found in the ACSmI Discovery registry.

3.3.2 DECIDE OPTIMUS web UI module

Once docker-compose is running with all the services up and healthy, OPTIMUS web UI can connect to
ht¢La¦{Φ CǊƻƳ ǘƘŜ Ƴŀƛƴ ǇŀƎŜ ƛƴ ǘƘŜ ƭŜŦǘ ǎƛŘŜ ǾƛŜǿ ŎƭƛŎƪ άht¢La¦{έ ŜƭŜƳŜƴǘΦ

Figure 18. DECIDE OPTIMUS Web UI main page.

Once we click OPTIMUS, OPTIMUS web UI will appear with four main components:

- The microservices list.

- The central view with two tabs.

- The first tab is the editor of fields for the selected microservice.

The second tab is the simulation executor.

Figure 19. DECIDE OPTIMUS web UI classification page.

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 28 of 32

www.decide-h2020.eu

¢ƘŜ ŦƻǊƳ ŦƛŜƭŘ ŦƻǊ ǘƘŜ ǎŜƭŜŎǘŜŘ ƳƛŎǊƻǎŜǊǾƛŎŜ ǎƘƻǿǎ ǘƘŜ ǊŜǉǳƛǊŜŘ ǇŀǊŀƳŜǘŜǊǎΦ ¢ƘŜ ǳǎŜǊ Ŏŀƴ ŎƘŜŎƪ άtǳōƭƛŎ
Ltέ ŀǎ ǘǊǳŜ ƻǊ ŦŀƭǎŜ ŦƻǊ ǘƘŜ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴΦ

CƻǊ ǘƘŜ άLƴŦǊŀǎǘǊǳŎǘǳǊŜ wŜǉǳƛǊŜƳŜƴǘǎέ ǘƘŜ ǳǎŜǊ Ŏŀƴ ƛƴŎƭǳŘŜ ǘƘŜ ǇǊƻǇŜǊǘƛŜǎ 5ƛǎƪΣ wŀƳ ŀƴŘ
numberCores.

Inside άwŜǎƻǳǊŎŜέ ŀǊŜŀΣ ŀ ōǳǘǘƻƴ ǿƛǘƘ ά!ŘŘ ŘŜǘŀŎƘŀōƭŜ ǊŜǎƻǳǊŎŜέ ǇŜǊƳƛǘǎ ǘƻ ŎǊŜŀǘŜ ƴŜǿ ŘŜǘŀŎƘŀōƭŜ
resources, as many as needed.

Figure 20. DECIDE OPTIMUS Web UI Detachable resources.

If the user wants to delete the created detachable resource, it can do that by using the trash icon
button in each right side of the resource.

After each microservice field satisfies the user requirements and the resources are created, the user
selects the simulation tab. It shows a selectable provider list with a simulate button:

Figure 21. DECIDE OPTIMUS Web UI Simulation.

The provider selection field offers the options shown in the Figure 22

Figure 22. DECIDE OPTIMUS Web UI Preferred provider

http://www.decide-h2020.eu/

D3.9 ς Final DECIDE OPTIMUS Version 1.0 ς Final. Date: 31.05.2019

© DECIDE Consortium Contract No. GA 731533 Page 29 of 32

www.decide-h2020.eu

After the selection of the provider the user can launch the simulation that will connect to OPTIMUS
(backend), and get the optimized results after a successful operation:

Figure 23. DECIDE OPTIMUS Web UI Simulation

The new results section is designed to show up to 5 schemas showing the CSIds and microservices
names and their ids.

¢ƘŜ ά{ŜƭŜŎǘ {ŎƘŜƳŀέ ōǳǘǘƻƴ ǎŜǊǾŜǎ ŀǎ ŀ ǎŜƭŜŎǘƛƻƴ ƻǇŜǊŀǘƛƻƴΣ ǿƘƛŎƘ ǿƛƭƭ ōŜ Ŧƛƴŀƭƭȅ ŀŘŘŜŘ ǘƻ ǘƘŜ
application description. After selecting the schema, it will be outlined and ready to save.

Figure 24. DECIDE OPTIMUS Web UI Deployment Schema Selection

3.4 Licensing information

The information about the license under which the software will be distributed, has been placed at the
header of all the code files (*.java files).

These headers are composed of the following lines:

http://www.decide-h2020.eu/

